2021 Annual Groundwater Monitoring Report Per EPA CCR Rule (CFR § 257.90-.98)

Asbury Generating Station CCR Impoundment Jasper County, MO

January 2022

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

2009 E. McCarty St., Ste. 2

Jefferson City, MO 65101

(573) 636-9454

www.mecpc.com

CERTIFICATE OF COMPLIANCE

Annual Groundwater Monitoring Report for Existing CCR Surface Impoundments EPA CCR Rule Section 40 CFR 257.90 (e) Empire District Electric Company – Asbury Power Plant Asbury, Missouri

The following presents the Annual Groundwater Monitoring Report for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. This serves as certification that the facility is in compliance with 40 CFR 257.90 (e) of the EPA CCR.

40 CFR 257.90 (e) states:

(e) Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report.

CERTIFICATION 257.90 (e)

The undersigned Professional Engineer (P.E.) is familiar with the requirements of 40 CFR Part 257. The above summarizes the status of the Groundwater Monitoring for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. I hereby certify that the facility is in compliance with 40 CFR 257.90 (e) and all information has been placed in the Operating Record. Notification of availability of this document should be provided to the State Director as required in section 257.107(h).

Name:	Anika	Careaga,	P.E
-------	-------	----------	-----

Seal:

Signature:

Date:

Registration Number: 2005022085

State: Missouri

TABLE OF CONTENTS

CERTIFICATES OF COMPLIANCE

1.0 INTRODUCTION	1
2.0 BACKGROUND DATA	2
3.0 ALTERNATIVE SOURCE DEMONSTRATION	3
4.0 MAY 2021 SAMPLING EVENT	4
5.0 NOVEMBER 2021 SAMPLING EVENT	5
6.0 EXCUTIVE SUMMARY	6

LIST OF APPENDICES

Appendix A – Alternative Source Demonstration Appendix B – May 2021 Sampling Event Appendix C – November 2021 Sampling Event

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Generating Station CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule.

In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017 the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater monitoring system. Background data of Appendix III and Appendix IV was collected from January 2016 to August 2017. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule.

On May 4 and 5, 2021 and November 8 and 9, 2021, semi-annual detection monitoring sampling events was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III only. Based on the results of the 2021 statistical analysis, the site will continue with detection monitoring for the 2022 sampling events per the EPA CCR Rule (§ 257.94).

The EPA CCR Rule requires the annual groundwater report completed by January 31st of the following year. This report serves as the annual groundwater report for the 2021 sampling events that will be completed by January 31, 2022 and posted on-line within 30 days. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The Empire District will notify the MDNR "State Director" via e-mail when this document is posted on-line, as required in the CCR rule.

2.0 BACKGROUND DATA

The purpose of the groundwater monitoring plan is to monitor the groundwater quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of April/May and October/November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event. The analysis of the additional data for the background data set was conducted. No trending was found in the additional four sets of data so they were added to the baseline data set to increase the statistical power of the background data.

3.0 ALTERNATIVE SOURCE DEMONSTRATION

The EPA Coal Combustion Residual (CCR) Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. The November 2020 sampling event report indicated a statistically significant increase (SSI) with a confirmed interwell prediction limit exceedance for Boron in MW-5A. Boron does not have a maximum contamination level (MCL).

The EPA CCR Rule 40 CFR § 257.94(e)(2) allows an alternative source demonstration to be completed within 90 days if the statistically significant increase (SSI) over background levels was caused by a source other than that CCR unit. The purpose of the Alternative Source Demonstration is to comply with the EPA CCR Rule 40 CFR 257.94(e)(2) *"The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer."*

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. **Appendix A** contains the complete report for the Alternative Source Demonstration for the November 2020 sampling event.

4.0 MAY 2021 SAMPLING EVENT

On May 4 and 5, 2021, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

Table 1 – Constituents During May 2021 Sampling Event										
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.13	<0.08J	<0.08	0.28	1.2	0.33	0.38	0.23
Calcium	mg/L	NA	36	97	200	100	300	260	180	480
Chloride	mg/L	NA	100	59	60	6.6	110	14	28	38
Fluoride	mg/L	4.0	0.37	0.14	0.2	0.35	0.33	0.31	0.35	<0.25J
рН	SU	NA	6.31	5.75	6.58	7.18	6.77	6.87	6.91	6.28
Sulfate	mg/L	NA	52	490	670	160	1500	1000	850	1800
Total Dissolved Solids	mg/L	NA	410	830	1300	580	2400	1700	1400	2700

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

There were no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. There are no current primary (health based) MCLs for pH but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. **Appendix A** contains the completed Alternative Source Demonstration. **Appendix B** contains the complete report for the May 2021 sampling event.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis for the November 2021 sampling event.

5.0 NOVEMBER 2021 SAMPLING EVENT

On November 8 and 9, 2021, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

Table 2 – Constituents During November 2021 Sampling Event										
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Constituent	Units	IVICL	(up)	(up)	(down)	(down)	(down)	(down)	(down)	(side)
Appendix III										
Boron	mg/L	NA	0.23	0.09	<0.08J	0.29	1.6	0.38	0.41	0.24
Calcium	mg/L	NA	38	87	260	100	370	260	190	470
Chloride	mg/L	NA	110	73	3.9	6.1	140	16	22	37
Fluoride	mg/L	4.0	0.47	0.21	0.14	0.35	0.27	0.25	0.38	<0.25J
рН	SU	NA	6.45	6.02	6.72	7.23	6.84	7.09	7.17	6.42
Sulfate	mg/L	NA	<1	430	530	140	1700	1400	780	1700
Total Dissolved	mg/L	NA	390	830	1400	580	3100	1800	1500	2800
Solids			550	050	1-00	550	5100	1000	1300	2000

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event. There were no initial interwell prediction limit exceedances for the listed monitoring well during November 2021 sampling event. During the November 2021 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2022 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis. **Appendix C** contains the full report for the November 2021 sampling event.

6.0 EXCUTIVE SUMMARY

This report is a summary of the 2021 sampling events and the findings of the statistical analysis of the results of the groundwater detection monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual reports which are included as appendices and have been placed in the Asbury Operating Record. Statistical analysis will continue utilizing interwell prediction limits per EPA's request. The site continues with the detection monitoring program on a semi-annual basis per the EPA CCR Rule (§ 257.94).

APPENDIX A


Alternative Source Demonstration (for the November 2020 Sampling Event)

Alternative Source Demonstration Per EPA CCR Rule (40 CFR § 257.94(e)(2))

Asbury Generating Station CCR Impoundment Jasper County, MO

April 2021

Prepared For: The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

2009 E. McCarty St., Ste. 2

Jefferson City, MO 65101

www.mecpc.com

(573) 636-9454

TABLE OF CONTENTS

1.0 CERTIFICATE OF COMPLIANCE	1
2.0 INTRODUCTION	2
3.0 SITE HISTORY	3
 4.0 ALTERNATIVE SOURCE DEMONSTRATION 4.1 Groundwater Issues 4.2 Historical Construction 4.3 Drawing Interpretation 4.4 Summary of Findings 	4 4 5 5
5.0 PROPOSED ACTIONS	6
6.0 CONCLUSIONS	7

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Monitoring Well Location
- Figure 3 Groundwater Piezometric Surface Map
- Figure 4 Black & Veatch Typical Details Sheet
- Figure 5 Barr Engineering CCR Impoundment Aerial Photograph
- Figure 6 Barr Engineering CCR Impoundment Topographic Mapping
- Figure 7 Barr Engineering Monitoring Well Cross-Sections

1.0 CERTIFICATE OF COMPLIANCE

Alternative Source Demonstration for Existing CCR Surface Impoundments EPA CCR Rule Section 40 CFR 257.94(e)(2) Empire District Electric Company – Asbury Power Plant Asbury, Missouri

The following Alternative Source Demonstration is being presented for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. This serves as certification that the facility has completed an Alternative Source Demonstration in compliance with 40 CFR 257.94 (e)(2) of the EPA CCR.

40 CFR 257.94(e)(2) states:

(2) The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

CERTIFICATION 257.94(e)(2)

The undersigned Professional Engineer (P.E.) is familiar with the requirements of 40 CFR Part 257. The above summarizes the status of the Alternative Source Demonstration for the Groundwater Monitoring Program for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. I hereby certify that the facility is in compliance with 40 CFR 257.94(e)(2) and all information has been placed in the Operating Record. Notification of availability of this document should be provided to the State Director as required in section 257.107(h).

Name: Anika Careaga, P.E.

Signature:

Seal:

Date:

Registration Number: 2005022085

State: Missouri

2.0 INTRODUCTION

The EPA Coal Combustion Residual (CCR) Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. The November 2020 sampling event report indicated a statistically significant increase (SSI) with a confirmed interwell prediction limit exceedance for Boron in MW-5A. Boron does not have a maximum contamination level (MCL). The November 2020 sampling event is described in detail in Appendix B of the 2020 Annual Groundwater Monitoring Report.

The EPA CCR Rule 40 CFR § 257.94(e)(2) allows an alternative source demonstration to be completed within 90 days if the statistically significant increase (SSI) over background levels was caused by a source other than that CCR unit. The purpose of the Alternative Source Demonstration is to comply with the EPA CCR Rule 40 CFR 257.94(e)(2) *"The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer."*

This Alternative Source Demonstration is being completed to demonstrate the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

3.0 SITE HISTORY

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is on **Figure 2**.

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Generating Station CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10-foot well screens. Each well was installed with an above ground steel protective cover. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells.

In December 2015, two (2) additional groundwater monitoring wells were installed for compliance with the EPA CCR Rule and identified as MW-5A and MW-6A. Both wells were installed to a total depth of 46 feet bgs. Each well was equipped with a 5-foot well screen and an above ground steel protective cover.

Well logs are included in the April 2018 Asbury CCR Impoundment Groundwater Monitoring Plan Appendix B Groundwater Sampling and Analysis Plan. All wells are registered with Missouri Department of Natural Resources (MDNR) – Missouri Geological Survey (MGS) Program.

Historically, the potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is the Groundwater Piezometric Surface Map for the November 2020 sampling event.

4.0 ALTERNATIVE SOURCE DEMONSTRATION

This Alternative Source Demonstration is being completed to demonstrate the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The November 2020 sampling event report indicated a statistically significant increase (SSI) with a confirmed interwell prediction limit exceedance for Boron in MW-5A.

4.1 Groundwater Issues

In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A for compliance with the EPA CCR Rule. Issues have since been noted in the sample results, statistical analysis and increased water level elevations for MW-5A compared to the existing wells. During the May 2018 sampling event it was noted that MW-5A had issues with ponding on the surface near the well. We continued to observe this situation during subsequent sampling events.

On December 11, 2019 an additional investigation of this well was completed. Palmerton & Parrish, Inc. (PPI) completed an inspection of the condition of the PVC riser and screen of MW-5A with a downhole camera. PPI determined that the conditions observed in the monitoring well pipe were normal. As part of this investigation MEC sampled the ponded water around MW-5A and water from the CCR impoundment. The results showed the levels of Boron in the ponded water were similar to Boron levels in the impoundment water sample.

The results of the interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed statistically significant increase (SSI) with an exceedance for Boron (MW-5A). Trending was found to be significant for Boron (MW-5A). Boron does not have a MCL. The facility chose to conduct an Alternative Source Demonstration in the next 90 days per the EPA CCR Rule (§ 257.94).

4.2 Historical Construction

The Asbury Power Plant was officially retired on March 1, 2020. Closure activities and closure design of the CCR Impoundment was initiated. During the design of the impoundment closure, historical drawings were discovered that indicated there was a dewatering trench and cutoff trench system designed and installed. This system was proposed in the Ash Pond Improvement Study by Black & Veatch dated April 3, 1987.

The Ash Pond Improvement Study was initiated due to concern with observed seepage at the toe of the bottom ash pond embankments and extensive erosion of the dam crest caused by wave action. The chosen alternative to limit seepage beneath the existing embankment was to construct a downstream cutoff trench. The cutoff trench was to be constructed of select clay fill with a permeability of 10⁻⁷ cm/sec or less. Excavation of this cutoff trench required the installation of a temporary dewatering system. This dewatering system consisted of a trench excavated near the toe of the slope to intercept seepage from the CCR pond. Once moisture conditions in the dewatering downstream area reached acceptable levels, excavation of the clay cutoff trench proceeded. The cutoff trench was approximately 10 feet wide at the bottom, with 2 (vertical) to 1 (horizontal) side slopes. The trench was filled with select compacted clay materials. The fill material had minimum permeability of approximately 10⁻⁷ cm/sec.

Black & Veatch prepared plans for the East Ash Pond Improvements. The plans that were issued for construction were dated October 28, 1987. MEC reviewed these plans to determine the

design location of the dewatering trench and cutoff trench in relation to the Groundwater Monitoring Wells. No as-built drawings for the construction could be found. These drawings included twenty-seven cross-sections through the northern, eastern, and southern berm of the lower portion of the CCR Impoundment. There were two Section Details for Construction for the two areas of the berms to be improved. **Figure 4** is Typical Details, Drawing S1005 of the Black & Veatch Drawings.

This figure includes Section 2 which is a typical detail for the dewatering trench and cutoff trench for Station 16+00 to Station 33+00. This is the area of the CCR Impoundment berm where MW-5A is located. The figure also includes Notes which discuss construction details for the dewatering trench and cutoff trench installation.

4.3 Drawing Interpretation

The information from the Black & Veatch drawings was digitized and then modeled by Barr Engineering to re-create this information. This information was then transferred to the most recent topographic mapping dated April 28, 2020 to reflect the current conditions at the CCR Impoundment. The dewatering trench and cutoff trench cross-section was modeled and a 3 dimensional surface was created for the dewatering trench and cutoff trench system. The location of the dewatering trench and cutoff trench is shown on **Figure 5** which is an aerial photograph and **Figure 6** which is a topographic map of the CCR Impoundment. The locations of the current groundwater monitoring wells are also shown on these plan sheets. Cross-sections were cut through the CCR Impoundment berm and the modeled dewatering trench and cutoff trench at the monitoring well locations. These cross-sections are shown on **Figure 7**.

Section 3 of **Figure 7** shows the newly developed cross-section through MW-5A. The direction of groundwater flow is from the left of the cross-section to the right of the cross-section.

Section 3 of **Figure 7** shows MW-5A was installed upgradient of both the dewatering trench and the cutoff trench. The purpose for the installation of this cutoff trench system was to eliminate seepage from the CCR impoundment. It is believed that water from the CCR Impoundment is being backed-up behind the cutoff trench system and is influencing the quality of the water within MW-5A. Therefore, MW-5A may actually be monitoring pond water instead of a potential release from the facility that impacts groundwater.

4.4 Summary of Findings

It was determined that monitoring well MW-5A was installed upgradient of the dewatering trench and cutoff trench. Upon this review, our theory is that the water accumulating within the manmade dewatering trench and behind (upgradient) of the cutoff trench could be impacting the quality of the water within this monitoring well. MW-5A may actually be monitoring pond water instead of a release from the facility impacting groundwater.

This would indicate that the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

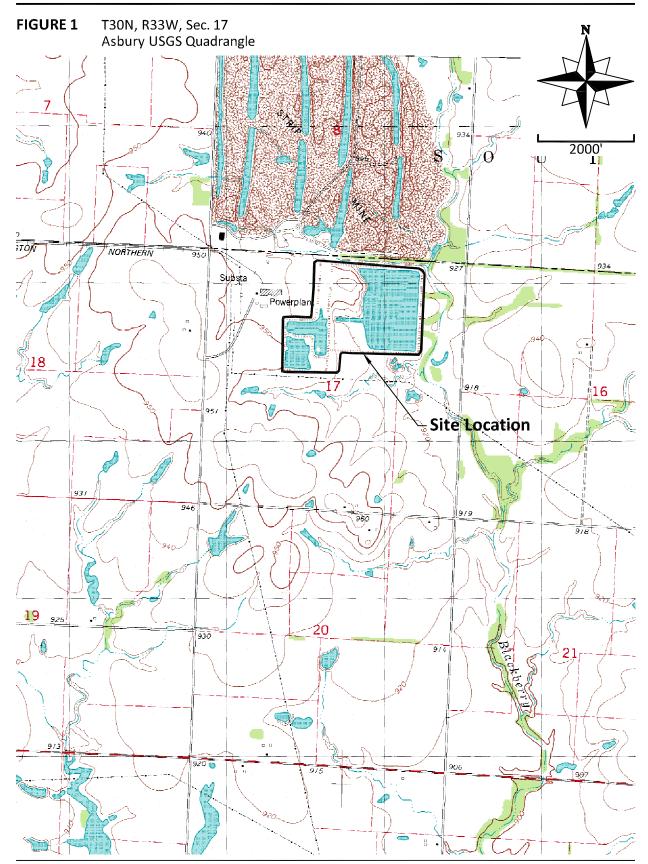
5.0 PROPOSED ACTIONS

It is recommended to install a replacement for monitoring well MW-5A. The monitoring well will be installed in accordance to MDNR Regulations. The new well will be located downgradient of the cutoff trench system to remove the potential influence of the dewatering trench and the cutoff trench. This will result in a system that will properly monitor the groundwater at the facility.

The replacement well proposed downgradient will include a PVC casing to eliminate any surface or trapped water from potentially impacting the new well and jeopardizing the integrity of the bedrock groundwater quality. MW-5A will continue to be monitored until the replacement well (MW-5AR) reaches the minimum eight (8) background samples needed to complete the required statistical analysis prior to abandoning MW-5A. This will also allow for a real-time comparison of the groundwater in the two wells.

6.0 CONCLUSIONS

EPA CCR Rule 40 CFR § 257.94(e)(2) allows an alternative source demonstration that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. It is believed that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of the dewatering trench. The dewatering trench is filled with rock and an engineered cutoff trench of compacted clay material was constructed to prevent pond water from seeping through the berm. The water within the man-made dewatering trench and upgradient of the clay cutoff trench is impacting the quality of the water within MW-5A. MW-5AR will be installed downgradient of the cutoff trench system. The new well will be monitored to determine if the theory is correct.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR Impoundment Alternative Source Demonstration Site Location Map

April 2021

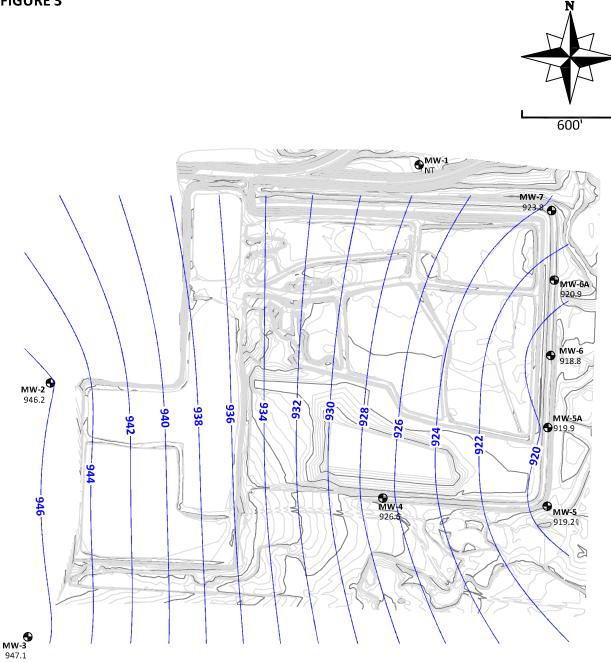
Asbury Generating Station CCR Impoundment Alternative Source Demonstration Monitoring Well Locations

FIGURE 2

мw-3

Well ID	Northing	Easting
MW-1	435791.18*	2765165.35
MW-2	434428.46	2762861.37
MW-3	432842.77	2762720.80
MW-4	433709.99	2764938.99
MW-5	433659.27	2765966.23
MW-5A	434150.04	2765969.78
MW-6	434600.46	2765987.98
MW-6A	435071.44	2766010.46
MW-7	435505.42	2765993.13

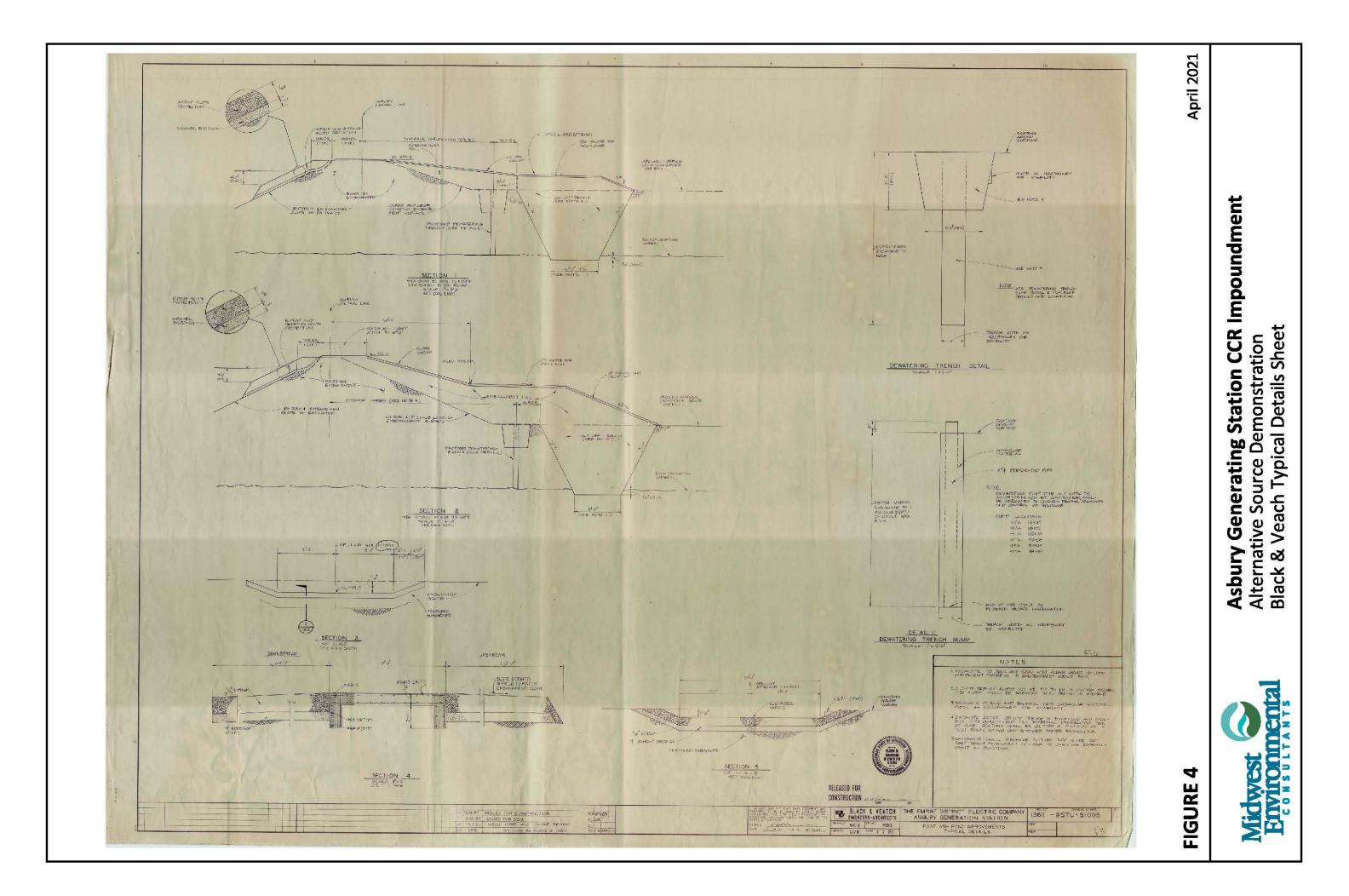
* Coordinate location is approximate


Legend

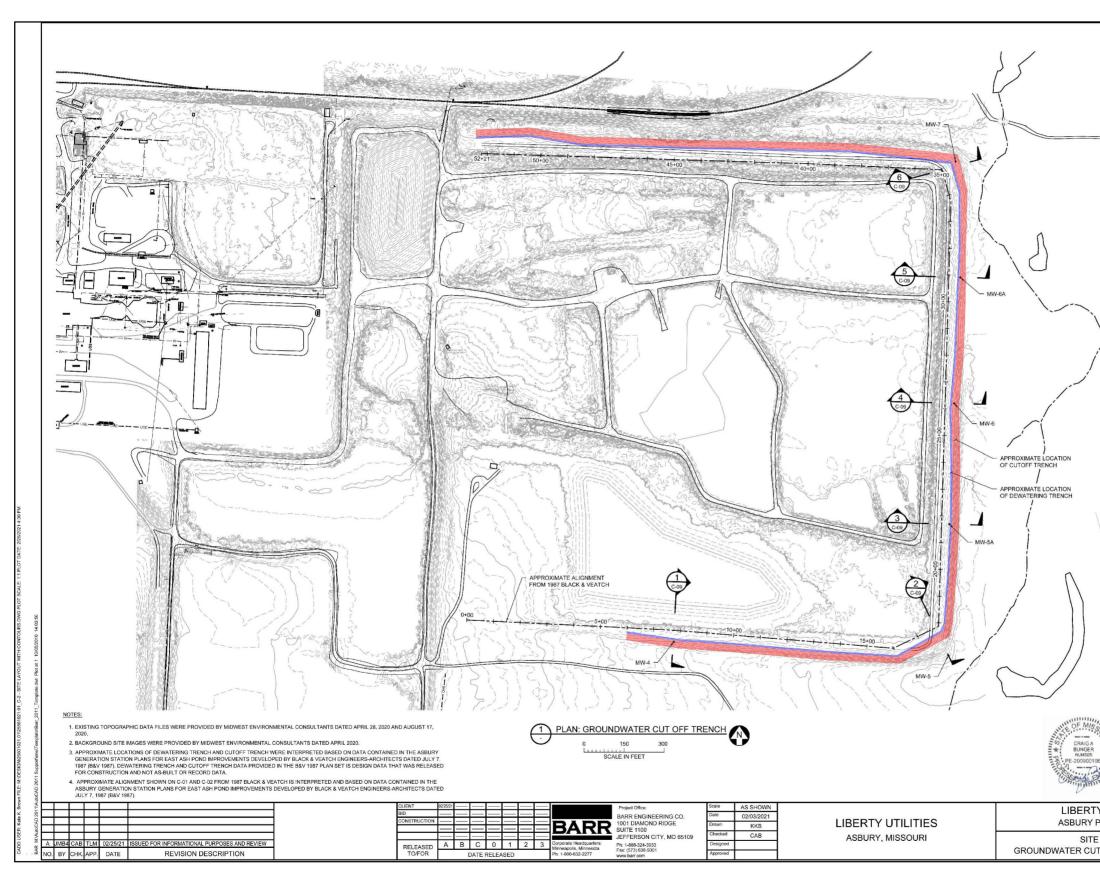
Monitoring Well

Asbury Generating Station CCR Impoundment Alternative Source Demonstration Groundwater Piezometric Surface Map - November 2020

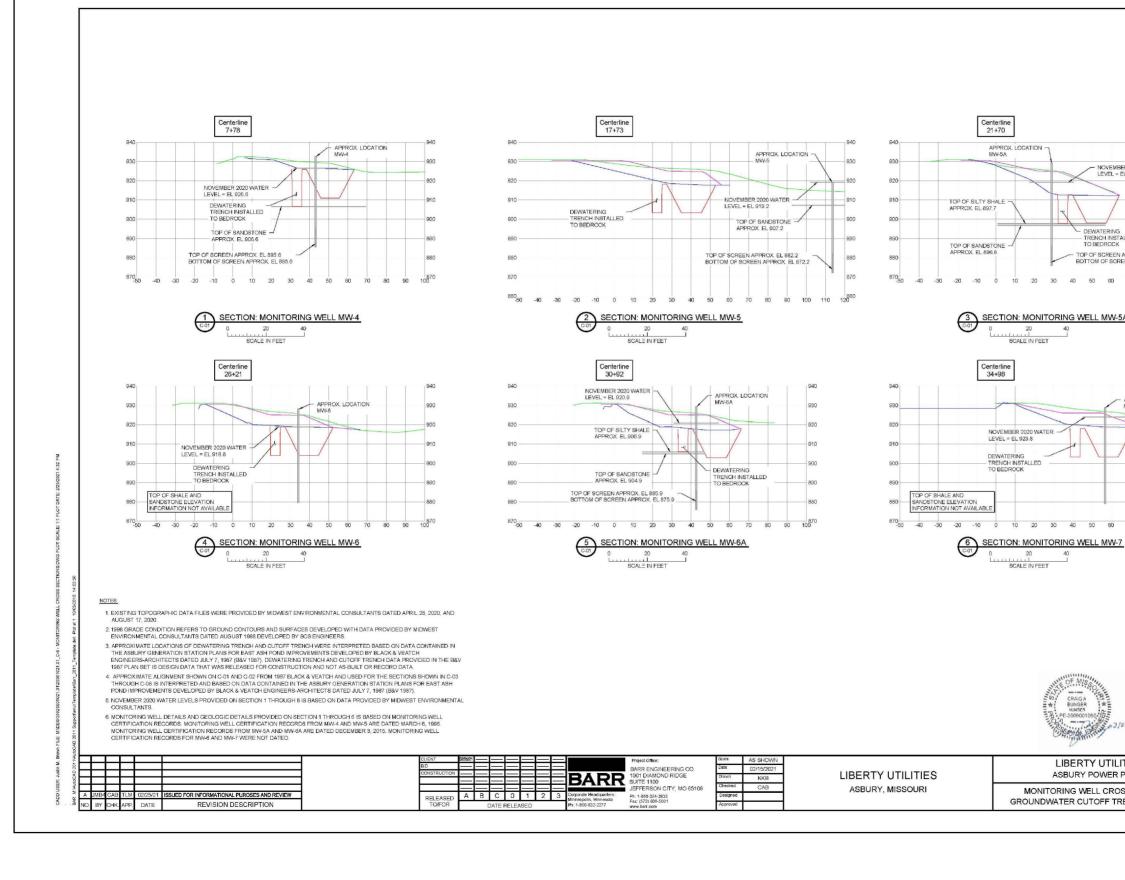
FIGURE 3



Well ID	Northing	Easting	Top Of Casing	Static Water Level (BTOC)	Static Water Level
					·
MW-1	435791.18	2765165.35	933.4	NT	NT
MW-2	434428.46	2762861.37	947.8	1.6	946.2
MW-3	432842.77	2762720.80	948.8	1.7	947.1
MW-4	433709.99	2764938.99	932.6	6.0	926.6
MW-5	433659.27	2765966.23	919.2	0.0	919.2
MW-5A	434150.04	2765969.78	929.3	9.4	919.9
MW-6	434600.46	2765987.98	928.0	9.2	918.8
MW-6A	435071.44	2766010.46	929.3	8.4	920.9
MW-7	435505.42	2765993.13	928.8	5.0	923.8


€

Monitoring Well



	April 2021	
		Asbury Generating Station CCR Impoundments Alternative Source Demonstration Barr CCR Impoundment Aerial Photograph
CRAIGA BUNGER MARKER ADDIED 2/25/2011 ISSUED FOR INFORMATIONAL PURPOSES AND REVIEW TY UTILITIES POWER PLANT CLIENT PROJECT NO. 25501021.01 CLIENT PROJECT NO. 25501021.01 CLIENT PROJECT NO. C-01 REV. NO. C-01 REV. NO.	FIGURE 5	Midwest Environmental

TY UTILITIES ' POWER PLANT 'E LAYOUT UTOFF TRENCH	1060 (H) 0 2 /25/2021		
LOCATION		ł	
BARR PROJECT No. 25501021 CLIENT PROJECT No. DWG. No. C-02) FOR INFORMATI POSES AND REVI		
01 REV. No. A			
FIGURE 6		April 2021	1 2021
Midwest	TANTS TANTS	Asbury Generating Station CCR Impoundments Alternative Source Demonstration Barr CCR Impoundment Topographic Mapping	

	LEGEND]	Apr	
		- EXISTING GRADE		
		- 1998 GRADE CONDITION		
		 LOCATION ADJUSTED 1987 DESIGN CONDITION 		
		LOCATION ADJUSTED 1987 EXISTING GRADE		
		- LOCATION ADJUSTED		
		CUTOFF TRENCH		ts
				<u>C</u>
	940			e
	930			F
ER 2020 WATER EL 919.9	920			р
				5
	910			Asbury Generating Station CCR Impoundments Alternative Source Demonstration Barr Monitoring Well Cross-Sections
	900			ă
ALLED	890			Ā
APPROX. EL 885.9 REEN APPROX. EL 87	880			L s
				8 - 5
70 80 90	100			C L L
				Ci∺t
5A				s g J
				ti Ss
				0 0 0
	940			5 E 5
- APPROX. LOCATIO	N			Asbury Generating Station CCR I Alternative Source Demonstration Barr Monitoring Well Cross-Sections
MW-7	930			e D e
7	920			≤ S Ei
	910			
/	900			
	890			Li S
				t e e
	880			סציב
70 80 90	870 100			
7_				ΞũΣ
				te st
				A A B
125/2021		R INFORMATIONAL		
12212 0001		ES AND REVIEW		
	to any solar state and	STOCKSON IN SHEET INSURANCES		
ITIES		RR PROJECT No. 25501021.01		
		ENT PROJECT No.		
SS SECTIONS		G. No. REV. No. C-09 A		たび。
				A.C.
			FIGURE 7	DE.
			6	
			ĭ. ∣	

2021 oril

APPENDIX B

May 2021 Sampling Event

2021 Groundwater Monitoring, Sampling & Statistics Per EPA CCR Rule (CFR § 257.90-.98)

May Sampling Event

Asbury Generating Station CCR Impoundment Jasper County, MO

July 2021

Prepared For: The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
 2.0 SITE LOCATION 2.1 History 2.2 Site Geology 2.3 Groundwater Monitoring Network Design 2.4 Groundwater Monitoring Network 2.5 Seasonal Variation 2.6 Groundwater Flow Direction 	3 3 4 4 4 5
3.0 BASELINE GROUNDWATER DATA 3.1 Baseline Data Collection 3.2 Background Data Analysis	6 6 6
4.0 GROUNDWATER SAMPLING EVENT	7
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA 5.1 Precision 5.2 Accuracy 5.3 Representativeness 5.4 Comparability 5.5 Completeness	8 8 8 8 9
 6.0 STATISTICAL ANALYSIS 6.1 Sampling Results 6.2 Statistical Analysis 6.3 Results Interpretation 6.4 Proposed Actions 	10 10 10 13 16

LIST OF FIGURES

Figure 1 – Site Location Figure 2 – Monitoring Well Location Figure 3 – Potentiometric Map

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Generating Station CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule. In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed online October 17, 2017, as required by the EPA CCR rule. On November 2, 2017 the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via e-mail when this document was posted on-line, as required in the CCR rule. The EPA CCR Rule requires the annual groundwater report be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2020 sampling events will be posted on-line within 30 days of placement in the operating record.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017 to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Boron does not have an MCL. The facility conducted an alternative source demonstration per the EPA CCR Rule (§ 257.94). The water within the man-made dewatering trench and upgradient of the clay cutoff trench is impacting the quality of the water within MW-5A. MW-5AR will be installed downgradient of the cutoff trench system. The new well will be monitored to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

On May 4 and 5, 2021, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the May 2021 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is on **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Generating Station CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

All wells are registered with MDNR – Missouri Geological Survey Program.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

<u>Warner Sandstone</u>. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine grained sandstone and claystone. The upper part is largely medium-bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in

the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

<u>Riverton Shale</u>. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient.

The groundwater monitoring wells (MWs) at the Asbury Generating Station are equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown on **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is actually a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule under per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of May and October.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas[™] for Ground Water Version 9.2.13 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event. The analysis of the additional data for the background data set was conducted and is included in **Appendix 5**. No trending was found in the additional four sets of data so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On May 4 and 5, 2021 eight (8) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance to the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods							
Method	Description						
9056A	Anions, Ion Chromatography						
6020A	Metals (ICP/MS)						
SM 2540C	Solids, Total Dissolved (TDS)						
Field Sampling	Field Sampling						

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (**Table 2**). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During May 2021 Sampling Event										
WELL	STATIC WA (ft-B		PURGE RATE	STABILIZED						
ID	Initial	Final	(mL/min)	рН						
MW-1*	NT	NA	NA	NA						
MW-2	1.03	4.84	200	6.31						
MW-3	0.40	0.40	200	5.75						
MW-4	6.22	15.72	200	6.58						
MW-5	3.27	16.54	200	7.18						
MW-5A	10.70	22.98	200	6.77						
MW-6	8.94	19.21	200	6.87						
MW-6A	8.10	20.43	200	6.91						
MW-7	3.46	3.61	200	6.28						
* Water Level Only	NA – Not Applicab	lo NT – Not Tost	ed (inaccessible)	•						

* Water Level Only NA – Not Applicable NT – Not Tested (inaccessible)

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Test America). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision</u>. Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system as a whole. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks.</u> Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. The Test America laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents During May 2021 Sampling Event														
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7					
Appendix III															
Boron	mg/L	NA	0.13	<0.08J	<0.08	0.28	1.2	0.33	0.38	0.23					
Calcium	mg/L	NA	36	97	200	100	300	260	180	480					
Chloride	mg/L	NA	100	59	60	6.6	110	14	28	38					
Fluoride	mg/L	4.0	0.37	0.14	0.2	0.35	0.33	0.31	0.35	<0.25J					
рН	SU	NA	6.31	5.75	6.58	7.18	6.77	6.87	6.91	6.28					
Sulfate	mg/L	NA	52	490	670	160	1500	1000	850	1800					
Total Dissolved Solids	mg/L	NA	410	830	1300	580	2400	1700	1400	2700					

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020 and submitted to the facility. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. In order to appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these analyses was not considered strong yet. The data set consisted of only 13 sampling events from

January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "*Insufficient data to test for seasonality: data were not deseasonalized.*" Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

	Table 4 – EPA Review of Groundwater Reports
Facility	Asbury Power Plant
Location	Asbury, MO
Owner	Empire District Electric Company
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis
Problematic Alternate Source Determination	
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

Sanitas[™] for Ground Water Version 9.6.25 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

Statistical analysis was performed on the Appendix III constituents from the sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have an exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL. The facility conducted an alternative source demonstration per the EPA CCR Rule (§ 257.94).

EPA CCR Rule 40 CFR § 257.94(e)(2) allows an alternative source demonstration that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. It is believed that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of the dewatering trench. The dewatering trench is filled with rock and an engineered cutoff trench of compacted clay material was constructed to prevent pond water from seeping through the berm. The water within the man-made dewatering trench and upgradient of the clay cutoff trench is impacting the quality of the water within MW-5A. MW-5AR will be installed downgradient of the cutoff trench system. The new well will be monitored to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Table 5 lists the parameters with exceedances of prediction limits during the sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

	Table 5 – Interwell Prediction Limit Exceedances Observed During May 2021 Sampling Event											
Constituent	Monitoring Well	Initial vs. Confirmed	Predicted Limit	Measured Concentration	Drinking Water MCLs							
Boron (mg/L)	MW-5A	Confirmed	0.4198	1.2	NA							
pH* (SU)	MW-5	Confirmed	6.826	7.18	NA							
pH* (SU)	MW-6	Confirmed	6.826	6.87	NA							
pH* (SU)	MW-6A	Confirmed	6.826	6.91	NA							

NA = Not Applicable

*Field Sampled (less precise but within the required hold time)

6.3 Results Interpretation

There were no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. However, the initial prediction limit exceedance of total dissolved solids (MW-5A) was not confirmed during the May 2020 sampling event. There are no current primary (health based) MCLs for pH but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Below is a discussion of the previous results for comparison.

November 2020

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a

MCL. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94).

The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event.

During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event.

During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH or sulfate.

During the May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resample confirmed the exceedances and the site planned to move into assessment monitoring.

However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction

exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event.

During the November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances was confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples".

Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that a there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event. During the May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

October 2017

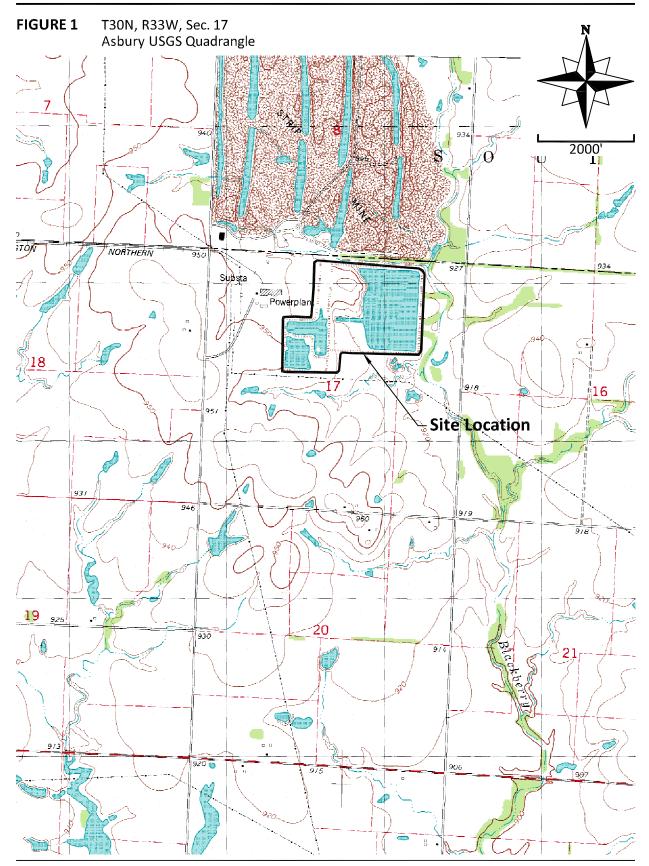
The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids. Review of the Total Dissolved Solids in the duplicate sample taken from the same well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the

site will re-evaluate MW-7 for Total Dissolved Solids during the next sampling event. MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions

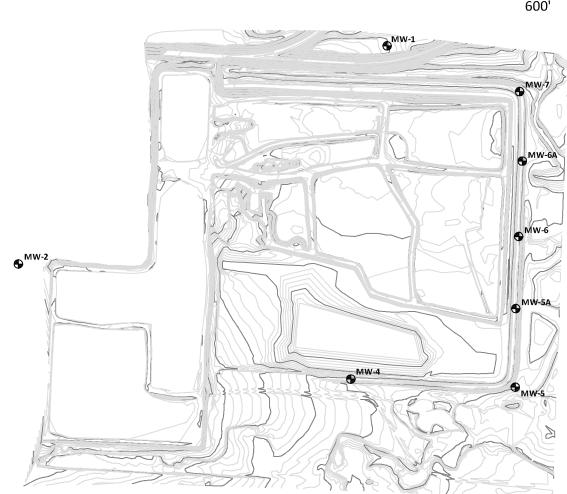
Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2021 Site Location Map


July 2021

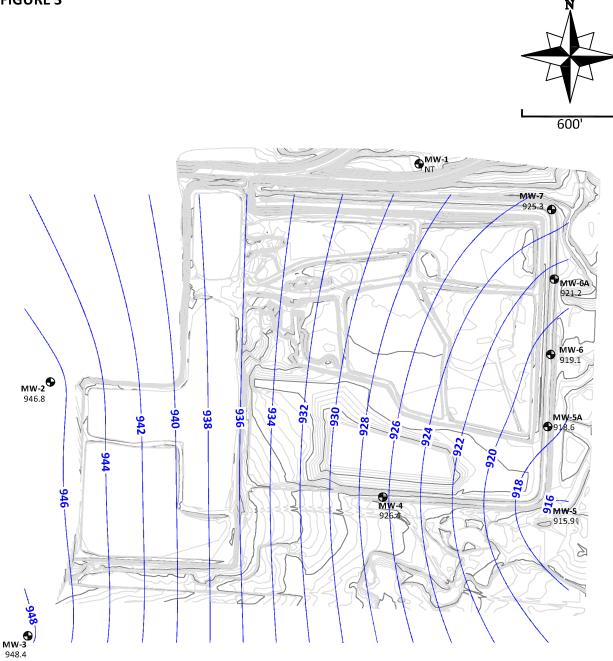
Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2021 Groundwater Monitoring System

FIGURE 2

мw-3

Well ID	Northing	Easting
MW-1	435791.18*	2765165.35
MW-2	434428.46	2762861.37
MW-3	432842.77	2762720.80
MW-4	433709.99	2764938.99
MW-5	433659.27	2765966.23
MW-5A	434150.04	2765969.78
MW-6	434600.46	2765987.98
MW-6A	435071.44	2766010.46
MW-7	435505.42	2765993.13

* Coordinate location is approximate


Legend

Monitoring Well

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2021 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Northing Easting		Static Water Level (BTOC)	Static Water Level
MW-1	435791.18	2765165.35	933.4	NT	NT
MW-2	434428.46	2762861.37	947.8	1.0	946.8
MW-3	432842.77	2762720.80	948.8	0.4	948.4
MW-4	433709.99	2764938.99	932.6	6.2	926.4
MW-5	433659.27	2765966.23	919.2	3.3	915.9
MW-5A	434150.04	2765969.78	929.3	10.7	918.6
MW-6	434600.46	2765987.98	928.0	8.9	919.1
MW-6A	435071.44	2766010.46	929.3	8.1	921.2
MW-7	435505.42	2765993.13	928.8	3.5	925.3

Legend	ł
--------	---

€

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

NOV 0 2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at <u>www.oa.mo.gov/ahc</u>.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at <u>pam.hackler@dnr.mo.gov</u>. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

lies

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:	October	18,	2017
-------	---------	-----	------

TO: Pam Hackler- WPP- Industrial Wastewater Unit

FROM: Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program, MGS

Johen M. Bono

SUBJECT:

Site characterization for existing CCR impoundments Asbury Power Plant Site Characterization Work Plan- CCR 37 21 22.66 Latitude, -94 35 4.79 Longitude, Jasper County, Missouri

SWR18011 Jasper County

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring Boron Calcium Chloride Fluoride pH Sulfate Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 and 228 combined

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7				
	Appendix III													
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J				
Calcium	mg/L	NA	57	74	220	84	200	250	140	570				
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38				
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J				
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51				
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800				
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800				
Appendix IV														
Antimony	mg/L	0.006	<0.002	<0.002 J										
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01				
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011				
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002				
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01				
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014				
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J				
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J				
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002				
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002				
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J				

1st Baseline Event – January 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7				
	Appendix III													
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29				
Calcium	mg/L	NA	120	92	260	94	190	250	160	620				
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34				
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16				
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22				
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800				
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900				
Appendix IV														
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002				
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004				
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089				
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002				
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002				
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016				
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002				
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30				
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002				
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002				
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002				
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J				

2nd Baseline Event – March 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
				Append	lix III							
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29		
Calcium	mg/L	NA	130	100	91	5	59	11	90	36		
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38		
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18		
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82		
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400		
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900		
Appendix IV												
Antimony	mg/L	0.006	<0.002 J									
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082		
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021		
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J						
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037		
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J		
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	< 0.001		
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J		

3rd Baseline Event – May 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	lix III					
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22
Calcium	mg/L	NA	38	79	110	74	180	220	130	430
Chloride	mg/L	NA	120	77	35	6	35	12	65	49
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J				
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900
	•			Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J				
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J

4th Baseline Event – August 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	lix III					
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26
Calcium	mg/L	NA	43	91	100	94	220	260	130	490
Chloride	mg/L	NA	130	65	74	6	29	13	65	56
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800
				Append	dix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J

5th Baseline Event – October 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26
Calcium	mg/L	NA	38	93	250	86	200	260	170	500
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000
			-	Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J							
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62

6th Baseline Event – March 2017 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26
Calcium	mg/L	NA	42	100	300	89	200	260	160	470
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J

7th Baseline Event – June 2017 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	< 0.001	<0.001J	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	< 0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

8th Baseline Event – August 2017 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

					2021 F	ield San	npling Lo	g	4				
	Purge In	formation:	CCR (Permit #	ump with)		Sample	Veil ID: <u>M</u> Blind	W- Duplicate	Field B	lank		
	Method of Well Purge: Peristaltic Pump with 3/8 - inch Diameter Tubing Actual Purge Volume Removed: <u>2000</u> mL post pump calibration . Date / Time Initiated: <u>5</u> <u>-21</u> <u>0</u> <u>110</u> Date / Time Completed: <u>5</u> <u>-21</u> <u>0</u> <u>1147</u> Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y / N Purge Data:												
۸	Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Tem (°C)		Cond	ecific uctivity 5/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	IXTU Turbid	(Co lity Clai	her blor, rity, lor)	
0	216	200	800	13.	3 65	7 .6	55	. 84	72.7	191	C	2	
	:24		1600	15.2	0.0	2 06	54	169	70.4	1.7	0		
	100		2000	120	LL F		54	12/5	67.6	221	2		
										Mine			
	Time sam	pled	A. c	30		A	ield Inspect access ad Conditio		Good G G	Fair F	Poor P P		
	Weather	Conditions	Rain		[5°1	L	asing Condi ocking Cap & iser Conditio	& Lock on	G G G	F F F	Р Р		
	Water Lev	el Start	1.0	3		W S1	ield Inspecti /ell ID Visibl tanding Wat lear of Wee	e ter	Yes Y		N/A N/A N/A	4	
	Water Lev	el Finish	9.8	/		الا م	leasuring Po blit sample v laintenance	oint with MDNR	C V		N/A N/A N/A N/A	A A	
	Name (ME	C Field Samp	ler): <u>Rvan Ortb</u>	als and Ri	ick Elgin	Ec	econtamina	tion Normal alibration No				λ	
	Sampler Si	gnature	-01	1	13th		y deviation diment Thio	s from SAP ckness Checl	Y ked Y	N N	N/A N/A	1	
-			e of sampling e	vents									
	Constitue	ent		Jnits	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6		

constituent	Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН	S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
Specific Conductance	umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
Total Well Depth	ft	Level			2.005	0.041	1.705	1.900
Average GW Depth	ft	Only	1.24	0,4	5.39	1.32	6.92	7.00
Average GW Drop	ft	1		GIT	0.00	1.52	0.92	7.86
2 System Volumes		DON'T		800	800	800	000	000
(Min Purged Amount)	mL	SAMPLE	800	000	500	000	800	800

2021 Field Sampling Log												
Facility:	Asbury (CCR (Permi	:#)	Mor		Blind D	/- uplicate	Field Bla	ink X.		
	formation:		_			L.	Υ.		-	R		
Method	of Well Purge					bing			1	:15		
Actual Purge Volume Removed: 2000 mL post pump calibration.												
Date / Time Initiated: $5 - 5 - 21 @ 12:58$ Date / Time Completed: $5 - 5 - 21 @$												
Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y N Purge Data:												
Time	Purge Rate (mL/min)	Cumulati Volume (mL		. pH (SU)	Spec Conduc (mS/	ctivity	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidi	Other (Color, ty Clarity,) Odor)		
1:02	200	200	160	5,75	1.10	7	1.41	61.3	210	2.3 C		
:04		1200	15.8	5.7.5	110	13	1.25	60.8	182.0	90		
106		1600	15.6		6.10	13	1,12	60,5	201.7	3		
:08		2000	15,9		1.10	1	1.14	6006	198.	36		
					1			0000	10			
Field Inspection Good Fair Poor												
		/	110		Ac	cess		G	F	Poor P		
Time sai	mpled		:10		Ac Pa	cess d Conditior	n	G G	F F	P P		
Time sai	mpled		1.10 P1		Ac Pa Ca	cess d Conditior sing Condit	n tion	G G G	F F F	P P P		
	4	[Dinnu	:10 Colm	UD bl	Ac Pa Ca Lo	cess d Conditior sing Condit cking Cap 8	n tion & Lock	G G G G	F F	P P P P		
	mpled < r Conditions	Unry	:10 Colm	up bl	Ac Pa Ca Loo Ris	cess d Conditior sing Condit cking Cap & ser Conditio	n tion & Lock on	G G G G G G	F F F	P P P P		
	4	Enny	:10 Colm	up bl	Ac Pa Ca Lo Ris Fie	cess d Conditior sing Condit cking Cap 8	n tion & Lock on ion	G G G G	F F F	P P P P P N/A		
Weathe	4	Enry	: 10 Colm 10	up bl	Ac Pa Ca Lou Riss Fie	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti	n tion & Lock on t <mark>on</mark> e	G G G G Yes	F F F	P P P P		
Weathe	r Conditions_	Enny 4	:10 Colm 10	up bl	Ac Pa Ca Loo Riss Fie Sta Cle	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti end In Visible anding Wat ear of Weed	n tion & Lock on t <mark>on</mark> e ter ds	G G G G Yes	F F F	P P P P <u>N/A</u> N/A N/A		
Weathe Water L	<pre><r conditions_<="" pre=""></r></pre>	Enny 4	1:10 Colm 10	up bl	Ac Pa Ca Lov Riss Fie Wa Sta Cle Ma	cess d Condition sing Condit cking Cap & er Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po	n tion & Lock on t <mark>on</mark> e e er ds bint	G G G G Yes	F F F No	P P P N/A N/A N/A N/A		
Weathe Water L	r Conditions_	Enny 04	10 Colm 10	up bl	Ac Pa Ca Lov Riss Fie We Sta Cle Spl	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v	n tion & Lock on ion e e e ter ds oint with MDNR	G G G G Yes	F F F No	P P P P N/A N/A N/A N/A N/A		
Weathe Water L	<pre><r conditions_<="" pre=""></r></pre>	Enny 04	: 10 Colm 10	up bl	Ac Pa Ca Lou Riss Fie Sta Cle Me Spl Ma	cess d Condition sing Condition cking Cap & ser Condition eld Inspection ell ID Visible anding Wat ear of Weed easuring Po- lit sample v aintenance	n tion & Lock on e e ter ds oint with MDNR Performed	G G G G G Ves Y Y Y Y	F F F No	P P P P N/A N/A N/A N/A N/A N/A		
Weathe Water Li Water Li	r Conditions	Dany 04 04	1.10 Colm 10 10	up bl	Ac Pa Ca Lou Riss Fie Sta Cle Spl Ma De	cess d Condition sing Condit cking Cap & ser Conditio ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina	n tion & Lock on e e er ds oint vith MDNR Performed tion Norma	G G G G G Ves Y Y Y Y		P P P P N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Li Water Li	<pre><r conditions_<="" pre=""></r></pre>	DUNNY 04 04	Colm Colm O	ick Elgin	Ac Pa Ca Lov Riss Fie Sta Cle Spl Ma De Equ	cess d Condition sing Condit cking Cap & ser Conditio ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina uipment Ca	n tion & Lock on e e ser ds oint vith MDNR Performed tion Norma alibration No	G G G G G Ves Y Y Y Y	F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Li Water Li	r Conditions	pler): <u>Ryan</u>	Colm Colm O	ick Elgin	Ac Pa Ca Lov Riss Fie We Sta Cle Spl Ma De Equ Red	cess d Condition sing Condit cking Cap & cer Conditio eld Inspecti ell ID Visible anding Wat car of Weed casuring Po lit sample v aintenance contamina uipment Ca developme	n tion & Lock on e e er ds oint vith MDNR Performed tion Norma	G G G G G Ves Y Y Y Y	F F F F N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A		
Weathe Water L Water L Name (N	r Conditions	pler): Ryan (Colm Colm O Drtbals and R	ick Elgin	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Equ Rev An	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina uipment Ca developme y deviation	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne	G G G G Y Y Y Y Y Y Y Y Y Y Y Y Y		P P P P M/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Lu Water Lu Name (N Sampler	r Conditions_ evel Start evel Finish MEC Field Sam	A	He	ick Elgin	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Equ Rev An	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina uipment Ca developme y deviation	n tion & Lock on e e er ds oint vith MDNR Performed tion Norma alibration No ent Needed is from SAP	G G G G Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F N N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Lu Water Lu Name (N Sampler	<pre>conditions_ evel Start evel Finish MEC Field Sam Signature al Data: Avera</pre>	A	He	ick Elgin	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Equ Rev An	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina uipment Ca developme y deviation	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne ent Needed as from SAP ckness Chec	G G G G Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F N N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Lu Water Lu Name (N Sampler Historica DH	<pre>conditions_ evel Start evel Finish MEC Field Sam Signature al Data: Averagituent</pre>	ge of sampli	Units S.U.	MW-1 NO TEST	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Eq Rev An Sec MW-2 5.83	cess d Condition sing Condit cking Cap & ser Condition eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contaminar uipment Ca developme y deviation diment Thio MW-3 5.08	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne ent Needed is from SAP ckness Chec MW-4 6.30	G G G G G G Y Y Y Y Y Y Y Y ked Y	F F F F NO N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Lu Water Lu Name (N Sampler Historica Consti pH Specifi	r Conditions evel Start evel Finish MEC Field Sam Signature al Data: Avera ituent	ge of sampli	ng events Units S.U. umhos/cm	MW-1 NO TEST GW	Ac Pa Ca Lov Riss Fie Wa Sta Cle Ma De Eq Rea An Sec	cess d Condition sing Conditi cking Cap & ser Condition eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po- lit sample v aintenance contaminar uipment Ca development y deviation diment Thio	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne ent Needed as from SAP ckness Chec	G G G G Yes Y Y Y Y Ked Y	F F F F No N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Li Water Li Name (N Sampler Historica Consti pH Specifi Total N	r Conditions evel Start evel Finish MEC Field Sam Signature al Data: Avera ituent ic Conductanc Well Depth	ge of sampli	ng events Units S.U. umhos/cm ft	MW-1 NO TEST GW Level	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Eq Rec An Sec Sta Spl Ma De Eq Rec An Sec	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina uipment Ca developme y deviation diment Thio 5.08 1.132	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne ent Needed as from SAP ckness Check MW-4 6.30 2.083	G G G G G Yes Y Y Y Y ked Y MW-5 6.83 0.841	F F F F N N N N N N N N N N N N N N N N	P P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Lu Water Lu Name (M Sampler Historica Consti pH Specifi Total V Averag	r Conditions evel Start evel Finish MEC Field Sam Signature al Data: Avera ituent ic Conductance Well Depth ge GW Depth	ge of sampli	ng events Units S.U. umhos/cm ft ft	MW-1 NO TEST GW	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Eq Rev An Sec MW-2 5.83	cess d Condition sing Condit cking Cap & ser Condition eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contaminar uipment Ca developme y deviation diment Thio MW-3 5.08	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne ent Needed is from SAP ckness Chec MW-4 6.30	G G G G G G Y Y Y Y Y Y Y Y ked Y	F F F F NO N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		
Weathe Water Lu Water Lu Name (M Sampler Historica DH Specifi Total M Average Average	r Conditions evel Start evel Finish MEC Field Sam Signature al Data: Avera ituent ic Conductanc Well Depth	ge of sampli	ng events Units S.U. umhos/cm ft	MW-1 NO TEST GW Level	Ac Pa Ca Lov Riss Fie We Sta Cle Me Spl Ma De Eq Rec An Sec Sta Spl Ma De Eq Rec An Sec	cess d Condition sing Condit cking Cap & ser Conditio eld Inspecti ell ID Visible anding Wat ear of Weed easuring Po lit sample v aintenance contamina uipment Ca developme y deviation diment Thio 5.08 1.132	n tion & Lock on e e er ds oint with MDNR Performed tion Norma alibration Ne ent Needed as from SAP ckness Check MW-4 6.30 2.083	G G G G G Yes Y Y Y Y ked Y MW-5 6.83 0.841	F F F F N N N N N N N N N N N N N N N N	P P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		

SAMPLE

mL

(Min Purged Amount)

800

	2021 Field Sampling Log												
Facility: Asbury CCR (Permit #) Monitoring Well ID: MW- Sample Blind Duplicate Field Blank													
-	f ormation : of Well Purge	: Peristalt	ic Pump with	3/8 - inch D	viameter Tu	l							
Date / Ti	Actual Purge Volume Removed 3000 mL post pump calibration. Date / Time Initiated: 5 -21 @ (4) Date / Time Completed: 5 - 5 -21 @												
Date / Time Initiated: 5 -21 0 7 Date / Time Completed: 5 -21 0 Well Purged To Dryness?: Y N Petroleum or Gas Detected? Y N													
Purge Da	Purge Data:												
Time	Purge Rate (mL/min)	Cumulat Volum (mL	1	. pH (SU)	Condu	cific Ictivity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidi (Other (Color, ity Clarity,) Odor)			
1:53	200	1000		- 6.56	1.5	17.	5.63	68.7	8.3	8			
: 55		140.0		- 6.5		15	5.83	72.3	9.4	1			
:57		1800) (5.7	6,50	9		5.62	73,9	15,0	4			
:54		2200) 140	6.50	1,5	29	5.40	74.3	15,6	8			
7.00 Field Inspection Good Fair Poor													
Time can	aplad	(2:0	0	A	ccess		G	Fair F	Poor P			
Time san	npled	(2:0	0	Pa	ccess ad Conditio	n	G					
		Suul	2: C	0	A Pa 799 Ca	ccess	n tion	G					
	npled Conditions	Soury	2: C Colm) O Low T	A Pa Ca La Ri	ccess ad Conditio asing Condi ocking Cap & ser Condition	n tion & Lock on	G G	F F F	P P P P			
		Sound	2: C Colm	O Last	A Pa Ci Lc Ri Fi	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect	n tion & Lock on ion	G G G G Yes	F F F	P P P P P			
	Conditions	Sound	2: 0 Colm 6.2) 0 Low T 2	A Pa Ca La Ri Fi W	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect 'ell ID Visibl	n tion & Lock on i <u>on</u> le	6 6 6 6 6	F F F F	P P P P P N/A N/A			
Weather	Conditions	Serung	2: 0 Colm 6.2)0 Lavit 2'	A Pa Ca La Ri Fi W St	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect	n tion & Lock on ion le	G G G G Yes	F F F F	P P P P P			
Weather Water Le	Conditions	Soury	2: 0 Colm 6.2 15.7) 0 Law T 2 2	A Pa Ca La Ri Fi W St Cl M	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po	n tion & Lock on ion ter ds pint	G G G G Yes	F F F F No	P P P N/A N/A N/A N/A			
Weather Water Le	Conditions	Serung	2: 0 Colm 6.2 15.7) 0 Lav T 2' 2'	Ar Pr Ca Lo Ri Fi W St Cl Sp	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po olit sample v	n tion & Lock on ion le ter ds oint with MDNR	G G G G Yes	F F F F No	P P P P N/A N/A N/A N/A N/A			
Weather Water Le	Conditions	Servery	2: 0 Colm 6.2 15.7) Lav T 2' 2'	Ar Pr Lc Lc Ri W St Cl M St M	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po olit sample aintenance	n tion & Lock on ion ter ds oint with MDNR Performed	G G G G G G G G G G G G Ves Y Y Y	F F F F No	P P P P N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le	Conditions	Derung Der): Ryan	2: C Colm 6.2 5.7) Carl 2 2 ck Elgin	A Pa Ca La Ri Ri W St Cl M St M De	ccess ad Conditio asing Conditio ocking Cap & ser Conditio <u>eld Inspect</u> 'ell ID Visibl anding Wat ear of Wee easuring Po olit sample v aintenance econtamina	n tion & Lock on ion ter ds ds pint with MDNR : Performed ition Normal	G G G G G G G G G G G G G G G G G G G	F F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le	Conditions evel Start evel Finish	Deri: Ryan	2: C Colm 6.2 15.7 Orthals and Ri) Cart 2 2 ck Elgin	Ar Pr Ca La Ri Eu W St Cl M St Cl M St Cl Eu Eu Eu	ccess ad Conditio asing Conditio ocking Cap & ser Conditio <u>eld Inspect</u> (ell ID Visibl anding Wat ear of Wee easuring Po plit sample v aintenance econtamina quipment Ca	n tion & Lock on ion ter ds oint with MDNR Performed	G G G G G G G G G G G G G G G G G G G	F F F F No	P P P P N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M	Conditions evel Start evel Finish	oler): <u>Ryan</u>	2:0 Calm 6.2 5.7 Ortbats and Ri	in	A Pa Pa Ca La Ri W W St Cl M St Cl M St Cl M Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	ad Conditio asing Conditio asing Conditio ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po bit sample aintenance econtamina quipment Ca edevelopment by deviation	n tion & Lock on ion ter ds bint with MDNR e Performed ition Normal alibration No	G G G G G G G Y Y Y Y Y Y Y Y Y Y Y	F F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S	Conditions evel Start evel Finish IEC Field Samp	A	the	in	A Pa Pa Ca La Ri W W St Cl M St Cl M St Cl M Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	ad Conditio asing Conditio asing Conditio ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po bit sample aintenance econtamina quipment Ca edevelopment by deviation	n tion & Lock on ion le ter ds bint with MDNR Performed alibration Normal alibration Normal alibration Normal	G G G G G G G Y Y Y Y Y Y Y Y Y Y	F F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S	Conditions evel Start evel Finish IEC Field Samp Signature I Data: Average	A	the	in	A Pa Pa Ca La Ri W W St Cl M St Cl M St Cl M Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	ad Conditio asing Conditio asing Conditio ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po bit sample aintenance econtamina quipment Ca edevelopment by deviation	n tion & Lock on ion le ter ds bint with MDNR Performed alibration Normal alibration Normal alibration Normal	G G G G G G G Y Y Y Y Y Y Y Y Y Y	F F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S Historica Constit pH	Conditions evel Start evel Finish IEC Field Samp Signature I Data: Average	ge of sampli	ing events	ji	A Pa Pa Ca La Ri E W W St Cl M St Cl M St Cl M Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	ccess ad Conditio asing Conditio ocking Cap & ser Conditio <u>eld Inspect</u> (ell ID Visibl anding Wat ear of Wee easuring Po olit sample aintenance econtamina quipment Ca edevelopment of deviation diment Thi	n tion & Lock on <u>ion</u> le ter ds bint with MDNR e Performed alibration Normal alibration Normal alibration SAP ckness Chec	G G G G G G G F Y Y Y Y Ked Y	F F F F N N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S Historica Constit PH Specific	Conditions evel Start evel Finish IEC Field Samp Signature I Data: Average uent c Conductance	ge of sampli	ng events Units S.U. umhos/cm	MW-1	A Pa Pa Ca La Ri W W St Cl M St Cl M M St Cl M Cl A Cl M St St Cl M M St St Cl M M St St Cl St St Cl St St St St St St St St St St St St St	ccess ad Conditio asing Conditio ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po bit sample aintenance econtamina quipment Ca edevelopment of deviation diment Thi	n tion & Lock on <u>ion</u> le ter ds bint with MDNR Performed alibration Normal alibration Normal alibration Normal strom SAP ckness Chec	G G G G G G G G Ves Y Y Y Y Ked Y Ked Y	F F F F NO N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S Historica Constit PH Specific Total W	Conditions evel Start evel Finish IEC Field Samp Signature I Data: Average uent Conductance /ell Depth	ge of sampli	ing events Units S.U. umhos/cm ft	MW-1 NO TEST GW Level	A Pa Pa Pa Ca La Ri Fi W W St Cl M St Cl M M Da Ecc Ar Se MW-2 5.83 0.786	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect dell ID Visibl anding Wat ear of Wee easuring Po olit sample wa aintenance econtamina quipment Ca edevelopment diment Thi diment Thi	n tion & Lock on ie ter ds bint with MDNR Performed alibration Normal alibration Normal alibration Normal strom SAP ckness Chec	G G G G G G G G G Y Y Y Y Y Y Y Y Y Y Y	F F F F No N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S Historica Constit pH Specific Total W Average	Conditions evel Start evel Finish IEC Field Samp Signature I Data: Average uent Conductance /ell Depth e GW Depth	ge of sampli	Ing events Units S.U. umhos/cm ft ft	MW-1 NO TEST GW	A Pa Pa Ca Ca Ca Ca N W W St Cl M M St Cl M M Ca St Cl M M St Cl M M St Cl M M St Cl M M St Ca St Ca St St Ca St St Ca St St St St St St St St St St St St St	ccess ad Conditio asing Condi ocking Cap & ser Conditio eld Inspect dell ID Visibl anding Wat ear of Wee easuring Po olit sample wa aintenance econtamina quipment Ca edevelopment diment Thi diment Thi	n tion & Lock on ie ter ds bint with MDNR Performed alibration Normal alibration Normal alibration Normal strom SAP ckness Chec	G G G G G G G G G Y Y Y Y Y Y Y Y Y Y Y	F F F F No N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			
Weather Water Le Water Le Name (M Sampler S Historica Constit pH Specific Total W Average	Conditions evel Start evel Finish IEC Field Samp Signature I Data: Average uent Conductance /ell Depth	ge of sampli	ing events Units S.U. umhos/cm ft	MW-1 NO TEST GW Level	A Pa Pa Pa Ca La Ri Fi W W St Cl M St Cl M M Da Ecc Ar Se MW-2 5.83 0.786	ccess ad Conditio asing Conditio ocking Cap & ser Conditio eld Inspect 'ell ID Visibl anding Wat ear of Wee easuring Po olit sample aintenance econtamina upment Ca edevelopment of deviation diment This MW-3 5.08 1.132	n tion & Lock on ion le ter ds bint with MDNR e Performed alibration Normal alibration Normal alibration Normal chrom SAP ckness Chec MW-4 6.30 2.083	G G G G G G G G Ves Y Y Y V Y Y V V Y Y V V Y Y V V Y Y V V V Y V	F F F F No N N N N N N N N N N N N N N N	P P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A			

SAMPLE

mL

(Min Purged Amount)

800

				2021 Fi	eld Sam	pling Lo	g	Ta		
		CCR (Permit #)	Mo	onitoring W Sample	ell ID: MV	V-	Field Blank	Ho
	formation: of Well Purge	e: Peristaltic Pu	mp with 3	3/8 - inch [Diameter To	/ Ibing		C		- m
		Actual Purg	e Volume	Removed	2000	_mL post	t pump calib	ration .		
Date / Ti	me Initiated:	5 4 -21	@ 2	:00	Date /	Time Comp	oleted: <u>5 –</u>	<u> / -21 @</u>		
Well Pur	ged To Dryne	ss?: Y /N		Petr	oleum or G	as Detected	1? Y / 🗹)		
Purge Da	nta:		1	_						—
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp. (°C)	pH (SU)	Condu	cific Ictivity /cm)	Dissolved Oxygen	ORP	Turbidity	(0 (0 (1)
2:04	200	800	14.2	7.16	,8	45	(mg/L)	(MV)	2,7.5	
:06		1200	14.2	Folt	2 . 8	45	.93	84.4	4.59	
:08		1600	14.1	7.18	.8	94	.45	82.7	10.22	
, PQ		2000	14.0	6.18	08	95	041	77.2	14.67	× <
			1	nup 1	AZASU Fi	eld Inspect	ion	Good	Fair	Poor
Time sam	pled	2.1	'0 / ô	1:35/1	WAE A	ccess ad Condition		G	F	P P
		Rain	49	of		ising Condi ocking Cap &		GG	F	P P
Weather	Conditions	590				ser Conditio eld Inspecti		G	F	P <u>N//</u>
Water Le	vel Start	J.27			Ŵ	ell ID Visibl anding Wat	e	Yes Y	A	N
		16.5	9		Cl	ear of Wee easuring Pc	ds	Ě	N N	N N
Water Lev	vel Finish _	ų –	-		Sr M	lit sample v aintenance	with MDNR Performed	Ý	N	N N
Name (M	EC Field Samp	oler): <u>Ryan Ortb</u> a	Is and Ric	k Elgin	Ec	uipment Ca	tion Normal alibration No ent Needed		N	N, N,
Sampler S	ignature	AC	ly		Ar	y deviation	is from SAP ckness Checi	Y Y ked Y	N N N	N N
		e of sampling ev								
Constitu	ient		Jnits	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6

Constituent	Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН	S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
Specific Conductance	umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
Total Well Depth	ft	Level						
Average GW Depth	ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
Average GW Drop	ft		100 M					
2 System Volumes (Min Purged Amount)	mL	DON'T SAMPLE	800	800	800	800	800	800

2021 Field Sampling Log													
Facility: Asbury CCR (Permit #) Monitoring Well ID: MW- 5A													
Facility:	Asbury (CR (Permi	t#		Mo	nitoring W	ell ID: MV	V- ····	R. Lint				
Purge In	formation:					sampie	Blind D		Field Bla	ικ [].			
-	of Well Purge	: Peristalt	ic Pump with	3/8 - inch E) iameter Tu	ubing							
	0					-							
		Actual	Purge Volum	e Removed:	180	mL post	t pump calib	ration.					
Data / Ti	Date / Time Initiated: $5 - 21 @ 2:55$ Date / Time Completed: $5 - 21 @$												
Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y / N													
Purge Data:													
Purge Cumulative Specific Discolved (VTU Other													
Rate Values Town all Specific Dissolved Turbidity of the													
Time (m) (min) (m) (%) (%) (11) (m(C) (m) Oxygen ORP (10) Oilly Clarit													
Time (mL/min) (mL (°C) (SU) (mS/cm) (mg/L) (MV) () Odor 1<5													
3:00	200	601) (3.5		2 2 1	70	70	111.2	. 011	4			
		1000	P	N K		270	0 (8	1dil	6.5				
:02		1400) (30-	t 6.19	d. l	18	. 71	110.6	d-83				
:04		180) 3,6	6.77	1 2.7	28.	.64	109.6	3.24	5			
		5			Fi	eld Inspect	ion	Good	<u>Fair</u>	Poor			
 .		~ ~ Y	105			ccess		G	F	Р			
Time sam	npled					ad Conditio		G	F	Р			
		5	"LI!	12	/ /	asing Condi ocking Cap &		G	F	P P			
Weather	Conditions) 204	IN KICTA	v Ce		ser Conditio		G	F	P P			
		1	6			eld Inspect		Yes	No	<u>N/A</u>			
		10	70 (W	ell ID Visibl	le	(Y)	N	 N/A			
Water Le	vel Start	100	10		St	anding Wat	ter	Y	N) N/A			
		10	a121			ear of Wee		Y	N	N/A			
Water Le	vol Finich	$X \cap \iota$	15			easuring Po		<u> </u>	N	N/A			
water Le							with MDNR Performed	Y		N/A N/A			
				;			ition Normal			N/A			
Name (M	EC Field Samp	oler): <u>Ryan</u>	Ortbals and Ri	ck Elgin			alibration No		N	N/A			
		1	50	0			ent Needed	Y	N	N/A			
C		1	No	r~			ns from SAP	Y	N	N/A			
Sampler S	Signature \leftarrow	AF.		1	Se	diment Thi	ckness Chec	ked Y	N	N/A			
Historical	Data: Averag	ge of sampli	ng events						v				
	Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-6												
pH			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72			
Specific	Conductance	2	umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900			

Constituent	Units	IVIW-1	IVIW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН	S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
Specific Conductance	umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
Total Well Depth	ft	Level						
Average GW Depth	ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
Average GW Drop	ft							
2 System Volumes		DON'T	800	800	800	800	800	800
(Min Purged Amount)	mL	SAMPLE	800				1	

2021 Field Sampling Log													
Facility: <u>Asbury CCR (Permit #</u>) Monitoring Well, ID: <u>MW-</u> Sample <u>Sample</u> <u>Blind Duplicate</u> <u>Field Blank</u> .													
Purge Information: Sample													
Method of Well Purge: Peristaltic Pump with 3/8 - inch Diameter Tubing													
Actual Purge Volume Removed: 1000 mL post pump calibration .													
Date / Time Initiated: $5 \frac{1}{21} @ \frac{3.2}{21} Date / Time Completed: 5 - \frac{1}{21} @$													
Well Purged To Dryness?: Y N Petroleum or Gas Detected? Y N a 72													
Purge Data:													
	Purge Cumulative Rate Volume Temp. pH me (mL/min) (mL) (°C) (SU)				Condu	Specific Dissolved Conductivity Oxygen (mS/cm) (mg/L)		ORP (MV)	Turbidit	(Co Y Cla	her blor, rity, lor)		
3:45	200	600	14.	3	7.03	1.9	22	1.94	103.9	13.6	4 (1	
:47		1000	19.	01	6.20	1.9	21	1921	101.2	16.0	17		
: 49		1400 19.0 6.88 1.219					1.57	100.0	2206	1			
:50						1.9	17	.49	22.1	2.07	z v		
									001				
Field Inspection Good Fair Poor													
Time e como la	at	172	55				cess		G]	F	Р		
Time sample		1	1.	1 . /			d Conditio sing Condi		G	F	P		
		N.	1.11		110		cking Condi		G	r E	P P		
Weather Con	nditions 🔅	LIDU	ay u	ny	10		er Conditi		G	F	P		
	-	~~~~		1			eld Inspect		Yes	No	<u>N/A</u>		
		Da	1LI				ell ID Visib		(Y)	N	N/		
Water Level S	Start	Jel	1			Sta	anding Wa	ter	Y	N	N/		
		10	0,1			Cle	ear of Wee	ds	X	N	N/		
		19.0	X (M	easuring Po	oint	(Y)	N	N//	A	
Water Level I	Finish					Sp	lit sample	with MDNR	Y	Ń	Ν/λ	A	
	Maintenance Performed X N N/A												
Decontamination Normal Y N N/A												A	
Name (MEC Field Sampler): Rvan Ortbals and Rick Elgin Equipment Calibration Normal Y N/A													
Redevelopment Needed Y /N N/A													
Any deviations from SAP Y / N N/A													
Sampler Signature Sediment Thickness Checked Y N N/A													
Historical Da	ta: Averag	e of stanli	ng events							~	l.		
Constituent Units MW-1 MW-2 MW-3 MW-5 MW-5A MW-6													
рН			S.U.		TEST	5.83	5.08	6.30	6.83	6.82	6.72	1	

Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
ft	Level						
ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
ft							
mL	DON'T SAMPLE	800	800	800	800	800	800
	S.U. umhos/cm ft ft ft ft	S.U. NO TEST umhos/cm GW ft Level ft Only ft DON'T	S.U. NO TEST 5.83 umhos/cm GW 0.786 ft Level ft Only 1.24 ft DON'T 800	S.U. NO TEST 5.83 5.08 umhos/cm GW 0.786 1.132 ft Level	S.U. NO TEST 5.83 5.08 6.30 umhos/cm GW 0.786 1.132 2.083 ft Level ft Only 1.24 0.4 5.39 ft DON'T 800 800 800	S.U. NO TEST 5.83 5.08 6.30 6.83 umhos/cm GW 0.786 1.132 2.083 0.841 ft Level ft Only 1.24 0.4 5.39 1.32 ft Only 1.24 0.4 5.39 1.32 ft Only 800 800 800 800	S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 umhos/cm GW 0.786 1.132 2.083 0.841 1.769 ft Level

2021 Field Sampling Log													
Facility: <u>Asbury CCR (Permit #</u>)						Monitoring Well ID: <u>MW-</u> Sample Blind Duplicate Field Blank .							
-	Purge Information:												
Method of Well Purge: Peristaltic Pump with 3/8 - inch Diameter Tubing													
	Actual Purge Volume Removed: BOD mL post pump calibration.												
Date / Time Initiated: $5 - \frac{7}{-21} = \frac{7}{21} = 7$													
Well Purged To Dryness?: Y /N Petroleum or Gas Detected? Y /N													
Purge Data:													
Time	Purge Rate (mL/min)	Purge Cumulative Rate Volume Temp. pH			Condu	cific Ictivity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)			
4:26	200 600 195 699					2P	3.42	110 F	43.49	C			
0-28		IDAC	7 14.3	101	1119	17	3.35	115	37,21	Ī			
38		140	2 14 3	6017	1.60	ab	3 29	113.0					
:32		1900	1 Pin	6012	10	10	0		24.08	Nel			
.00		18-00	1900	6.91	106	1+	3.26	113.9	20,12	<u>v</u>			
Well ID Visible Y N									F F F F N N	P P P P P N/A N/A N/A			
Water Le	Water Level Finish 20.443 Clear of Weeds V N N/A Water Level Finish 20.443 N N/A Split sample with MDNR Y N N/A Maintenance Performed Y N N/A												
Name (MEC Field Sampler): Ryan Ortbals, and Rick Elgin Maintenance Performed Y N N/A Redevelopment Needed Y N N/A Any deviations from SAP Y N N/A													
Sampler Signature Sediment Thickness Checked Y N N/A													
	Data: Averag	ge of samp		Ballar Ca	B. 0144 W	1		1					
Constit pH	uent		Units S.U.	MW- 6A 6.87	MW-7 6.12		_						
	Conductance	2	umhos/cm	1.601	2.699								
	ell Depth	-	ft	1.001	2.000								
	e GW Depth		ft	7.28	3.04								
	e GW Drop		ft										
2 Syster	n Volumes Irged Amount	:)	mL	800	800								

2021	Field	Sampling	Log
------	-------	----------	-----

					•	<u> </u>	•	7		
Facility:	Asbury (CCR (Permit #)	Monit	toring We	II.ID: MW	1- (
						Sample [uplicate	Field Blank	
Purge Inf	formation:					(
Method	of Well Purge	: Peristaltic Pu	mp with 3	/8 - inch Dia	ameter Tubi	ng				
					2000					
				Removed:	0000	mL post	pump calib	ration.		
Date / Ti	me Initiated:	5- 5	-21 @ c	2:34	Date / Tir	ne Comp	leted: <u>5 –</u>	<u>5 -21- @</u>	ð	
Well Pur	ged To Dryne	ss?: Y / N		Petrol	leum or Gas l	Detected	? Y / N)		
Purge Da	ata:	\mathcal{O}					\mathcal{O}			
				1						
	Purge	Cumulative			Specif					Other
	Rate Volume Temp. pH						Dissolved		Turbidity	(Color,
Time		Conducti		Oxygen	ORP	running	Clarity,			
	(mL/min)	(ml)	(°C)	(SU)	(mS/cr	"	(mg/L)	(MV)	()	Odor)
2:36	br200	n	n	N		\sim				
0138		800	1512	6.29	2:671	4	3.73	126.4	17.69	C
:40		1200	15.0	6.29	2.66	8 1	3.40	101.8	13.22	-
: 42		1600	19.9	6.29	2.66	9 -	3.27	112,3	9.81	
. 44	1	2000	14.8	6.28	266	3 1	3.22	114.4	9.88	
		0	. 11		<u>Field</u>	Inspecti	ion	Good	<u>Fair</u> P	oor
		à	:4 4	5	Acce			G	F	Р
Time sam	pled	Ci	12	0		Conditio		G	F	Ρ
		\bigcirc	/	709		ng Condit		G	F	Р
1441	o 1945	Jul a Dell	Car	10	Lock	ing Cap 8		G	F	Р
Weather	Conditions <u></u>	unnig	Car	19		r Conditio		G	F	P
		4	77 11	11		I Inspecti		Yes	No	<u>N/A</u>
Mator 1 -	val Ctart	1	5.41	n		ID Visibl		<u> </u>	N	N/A
Water Le	vel start		V. (U		ding Wat		× 1	N	N/A
		, i X	2 / 1			r of Wee suring Pc		(A)	N	N/A
Water Lo	vel Finish	\sim	r.O(_	with MDNR	CY Y	N	N/A N/A
water Le			~				Performed	r V —		N/A N/A
							tion Normal		M	N/A N/A
Name (M	EC Field Sam	pler): Ryan Orth	als and Ri	ck Elgin			alibration No		N /	N/A
		//	11	-0-		-	ent Needed	Y	1 N	N/A
		1 7/	LA				s from SAP	Y	N	N/A
Sampler S	Signature	1/1	e)	-			ckness Chec	ked Y	N	N/A
	C	A							h	
		ge of sampling e			i		1	1		
Constit	uent		Units	MW- 6A	MW-7					
рН			S.U.	6.87	6.12					
	Conductance	e um	hos/cm	1.601	2.699					
	/ell Depth		ft							
	e GW Depth		ft	7.28	3.04					
	e GW Drop		ft							
	m Volumes		mL	800	800					
(Min Pu	irged Amount	:)								

X

APPENDIX 4

Analytical Results from Lab

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-121224-1

Client Project/Site: Asbury Ash Pond Sampling Event: Asbury Ash Pond

For:

Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Attn: Mr. Rick Elgin

Authorized for release by: 6/11/2021 4:05:02 PM

Andy Johnson, Manager of Project Management (615)301-5045 Andy.Johnson@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	12
QC Sample Results	22
QC Association Summary	25
Chain of Custody	27
Receipt Checklists	29

Job ID: 180-121224-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-121224-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 5/6/2021 10:15 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.5° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 2540C: The following samples were analyzed outside of analytical holding time due to the samples being logged in with a collection date of 05/05/21 and subsequently changing to 05/04/21 per the client: MW-5A (180-121224-6), MW-6 (180-121224-7), MW-6A (180-121224-8), Dup (180-121224-9) and MW-2 (180-121224-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Qualifiers

Qualifiers		3
HPLC/IC Qualifier	Qualifier Description	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
General Che	mistry	
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.	8
Glossary		d
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	44
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML MPN	Minimum Level (Dioxin) Most Probable Number	
MQL	Most Probable Number Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC		
	Quality Control	
RER	Quality Control Relative Error Ratio (Radiochemistry)	
RER RL	Relative Error Ratio (Radiochemistry)	
RER RL RPD	•	
RL	Relative Error Ratio (Radiochemistry) Reporting Limit or Requested Limit (Radiochemistry)	
RL RPD	Relative Error Ratio (Radiochemistry) Reporting Limit or Requested Limit (Radiochemistry) Relative Percent Difference, a measure of the relative difference between two points	

Accreditation/Certification Summary

Client: Midwest Environmental Consultants Project/Site: Asbury Ash Pond Job ID: 180-121224-1

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21 *
Connecticut	State	PH-0688	09-30-22
Florida	NELAP	E871008	06-03-21
Georgia	State	PA 02-00416	04-30-22
llinois	NELAP	004375	06-30-21
ansas	NELAP	E-10350	01-31-22
entucky (UST)	State	162013	04-30-21 *
Kentucky (WW)	State	KY98043	12-31-21
ouisiana	NELAP	04041	06-30-21
laine	State	PA00164	03-06-22
linnesota	NELAP	042-999-482	12-31-21
evada	State	PA00164	07-31-21
ew Hampshire	NELAP	2030	04-05-22
ew Jersey	NELAP	PA005	06-30-21
ew York	NELAP	11182	04-01-22
orth Carolina (WW/SW)	State	434	12-31-21
orth Dakota	State	R-227	04-30-21 *
egon	NELAP	PA-2151	02-06-22
ennsylvania	NELAP	02-00416	04-30-22
Rhode Island	State	LAO00362	12-31-21
exas	NELAP	T104704528	03-31-22
S Fish & Wildlife	US Federal Programs	058448	07-31-21
SDA	Federal	P-Soil-01	06-26-22
SDA	US Federal Programs	P330-16-00211	06-26-22
tah	NELAP	PA001462019-8	05-31-21
rginia	NELAP	10043	09-14-21
Vest Virginia DEP	State	142	01-31-22
Visconsin	State	998027800	08-31-21

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Midwest Environmental Consultants Project/Site: Asbury Ash Pond

5 6 7

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Asset
80-121224-1	MW-3	Water	05/05/21 13:10	05/06/21 10:15	
80-121224-2	MW-4	Water	05/05/21 14:00	05/06/21 10:15	
80-121224-3	MW-7	Water	05/05/21 14:45	05/06/21 10:15	
80-121224-4	Field Blank	Water	05/05/21 15:15	05/06/21 10:15	
80-121224-5	MW-5	Water	05/04/21 14:10	05/06/21 10:15	
80-121224-6	MW-5A	Water	05/04/21 15:05	05/06/21 10:15	
80-121224-7	MW-6	Water	05/04/21 15:55	05/06/21 10:15	
80-121224-8	MW-6A	Water	05/04/21 16:35	05/06/21 10:15	
80-121224-9	Dup	Water	05/04/21 00:00	05/06/21 10:15	
80-121224-10	MW-2	Water	05/04/21 13:30	05/06/21 10:15	

Method Summary

Client: Midwest Environmental Consultants Project/Site: Asbury Ash Pond

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 9040C	рН	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Matrix: Water

Client Sample ID: MW-3 Date Collected: 05/05/21 13:10 Date Received: 05/06/21 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A at ID: CHIC2100A		1			356264	05/10/21 13:53	EPS	TAL PIT
Total/NA	Analysis Instrumer	EPA 9056A at ID: CHIC2100A		5			356264	05/10/21 14:09	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020A ht ID: A		1			357468	05/18/21 15:57	RSK	TAL PIT
Total/NA	Analysis Instrumer	EPA 9040C at ID: NOEQUIP		1			356923	05/14/21 10:09	MTW	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	356535	05/11/21 17:32	KMM	TAL PIT

Client Sample ID: MW-4 Date Collected: 05/05/21 14:00 Date Received: 05/06/21 10:15

Lab Sample ID: 180-121224-2

Matrix: Water

5

8

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		1			356264	05/10/21 18:44	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		10			356264	05/10/21 19:01	EPS	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A t ID: A		1	50 mL	50 mL	356758 357468	05/13/21 06:59 05/18/21 16:01		TAL PIT TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:12	MTW	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	356535	05/11/21 17:32	KMM	TAL PIT

Client Sample ID: MW-7 Date Collected: 05/05/21 14:45

Lab Sample ID: 180-121224-3 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		2.5			356264	05/10/21 20:22	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		25			356264	05/10/21 20:39	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A It ID: A		1			357468	05/18/21 16:04	RSK	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:15	MTW	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	356535	05/11/21 17:35	KMM	TAL PIT

Eurofins TestAmerica, Pittsburgh

Lab Sample ID: 180-121224-1

Lab Sample ID: 180-121224-4

Lab Sample ID: 180-121224-5

Client Sample ID: Field Blank Date Collected: 05/05/21 15:15 Date Received: 05/06/21 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		1			356264	05/10/21 22:16	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: A		1			357468	05/18/21 16:08	RSK	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:18	MTW	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	356535	05/11/21 17:32	КММ	TAL PIT

Client Sample ID: MW-5 Date Collected: 05/04/21 14:10 Date Received: 05/06/21 10:15

Batch Batch Dil Initial Batch Final Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA 9056A 1 356264 05/10/21 14:56 EPS TAL PIT Instrument ID: CHIC2100A **Total Recoverable** Prep 3005A 50 mL 50 mL 356758 05/13/21 06:59 TLP TAL PIT Total Recoverable Analysis EPA 6020A 357468 05/18/21 16:12 RSK TAL PIT 1 Instrument ID: A Total/NA Analysis EPA 9040C 356923 TAL PIT 1 05/14/21 10:24 MTW Instrument ID: NOEQUIP Analysis Total/NA SM 2540C 1 100 mL 100 mL 356535 05/11/21 17:35 KMM TAL PIT Instrument ID: NOEQUIP

Client Sample ID: MW-5A Date Collected: 05/04/21 15:05 Date Received: 05/06/21 10:15

Lab Sample ID: 180-121224-6 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		2.5			356264	05/10/21 21:28	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		25			356264	05/10/21 21:44	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: A		1			357468	05/18/21 16:15	RSK	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:30	MTW	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	356698	05/12/21 15:46	KMM	TAL PIT

Matrix: Water

Matrix: Water

Client Sample ID: MW-6 Date Collected: 05/04/21 15:55 Date Received: 05/06/21 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		1			356264	05/10/21 19:50	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		10			356264	05/10/21 20:06	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A tt ID: A		1			357468	05/18/21 16:19	RSK	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:33	MTW	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	356698	05/12/21 15:46	KMM	TAL PIT

Client Sample ID: MW-6A Date Collected: 05/04/21 16:35 Date Received: 05/06/21 10:15

Lab Sample ID: 180-121224-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A ID: CHIC2100A		1			356264	05/10/21 18:12	EPS	TAL PIT
Total/NA	Analysis Instrument	EPA 9056A t ID: CHIC2100A		10			356264	05/10/21 18:28	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis Instrument	EPA 6020A t ID: A		1			357468	05/18/21 16:22	RSK	TAL PIT
Total/NA	Analysis Instrument	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:36	MTW	TAL PIT
Total/NA	Analysis Instrument	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	356698	05/12/21 15:46	KMM	TAL PIT

Client Sample ID: Dup Date Collected: 05/04/21 00:00 Date Received: 05/06/21 10:15

Lab Sample ID: 180-121224-9

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A t ID: CHIC2100A		1	Amount	Amount	356264	05/10/21 16:33		TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		5			356264	05/10/21 16:50	EPS	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A tt ID: A		1	50 mL	50 mL	356758 357468	05/13/21 06:59 05/18/21 16:33		TAL PIT TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			356923	05/14/21 10:39	MTW	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	356698	05/12/21 15:46	KMM	TAL PIT

Eurofins TestAmerica, Pittsburgh

Client Sample ID: MW-2 Date Collected: 05/04/21 13:30 Date Received: 05/06/21 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			356264	05/10/21 17:39	EPS	TAL PIT
	Instrumer	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	356758	05/13/21 06:59	TLP	TAL PIT
Total Recoverable	Analysis	EPA 6020A		1			357468	05/18/21 16:37	RSK	TAL PIT
	Instrumer	nt ID: A								
Total/NA	Analysis	EPA 9040C		1			356923	05/14/21 10:42	MTW	TAL PIT
	Instrumer	t ID: NOEQUIP								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	356698	05/12/21 15:46	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT Batch Type: Prep

TLP = Tara Peterson

Batch Type: Analysis EPS = Evan Scheuer

KMM = Kendric Moore MTW = Michael Wesoloski

RSK = Robert Kurtz

Lab Sample ID: 180-121224-10

Matrix: Water

pН

Job ID: 180-121224-1

Client Sample ID: MW-3 Lab Sample ID: 180-121224-1 Date Collected: 05/05/21 13:10 **Matrix: Water** Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Analyzed Prepared 1.0 0.71 mg/L 05/10/21 13:53 Chloride 59 Fluoride 0.10 0.026 mg/L 05/10/21 13:53 0.14 Sulfate 490 5.0 3.8 mg/L 05/10/21 14:09 Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Analyte Analyzed Calcium 0.50 0.13 mg/L 05/13/21 06:59 05/18/21 15:57 97 0.080 Boron 0.056 J 0.039 mg/L 05/13/21 06:59 05/18/21 15:57 **General Chemistry** Analyte RL MDL Unit **Result Qualifier** D Prepared Analyzed 05/11/21 17:32 **Total Dissolved Solids** 830 10 10 mg/L Analyte

RL **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.1 SU 5.9 HF 0.1 05/14/21 10:09 1

Dil Fac

Dil Fac

Dil Fac

1

1

5

1

1

Job ID: 180-121224-1

9

Client Sample ID: MW-4 Lab Sample ID: 180-121224-2 Date Collected: 05/05/21 14:00 **Matrix: Water** Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 1.0 0.71 mg/L 05/10/21 18:44 Chloride 60 1 Fluoride 0.10 0.026 mg/L 05/10/21 18:44 0.20 1 Sulfate 670 10 7.6 mg/L 05/10/21 19:01 10 Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed Calcium 200 0.50 0.13 mg/L 05/13/21 06:59 05/18/21 16:01 1 ND 0.080 Boron 0.039 mg/L 05/13/21 06:59 05/18/21 16:01 1 **General Chemistry** MDL Unit Analyte RL **Result Qualifier** D Prepared Analyzed Dil Fac 05/11/21 17:32 **Total Dissolved Solids** 1300 10 10 mg/L 1 RL Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.1 SU pН 7.0 HF 0.1 05/14/21 10:12 1

Job ID: 180-121224-1

Analyzed

05/10/21 20:22

05/10/21 20:22

05/10/21 20:39

Analyzed

Matrix: Water

Dil Fac

Dil Fac

2.5

2.5

25

Client Sample ID: MW-7 Lab Sample ID: 180-121224-3 Date Collected: 05/05/21 14:45 Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Chloride 2.5 1.8 mg/L 38 0.25 Fluoride 0.065 mg/L 0.19 J Sulfate 1800 25 19 mg/L Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Result Qualifier Analyte RL MDL Unit D Prepared

							•		
Calcium	480		0.50	0.13	mg/L		05/13/21 06:59	05/18/21 16:04	1
Boron	0.23		0.080	0.039	mg/L		05/13/21 06:59	05/18/21 16:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2700		20	20	mg/L			05/11/21 17:35	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	6.6	HF	0.1	0.1	SU			05/14/21 10:15	1

Job ID: 180-121224-1

Client Sample ID: Field Blank Date Collected: 05/05/21 15:15 Date Received: 05/06/21 10:15

Lab Sample ID: 180-121224-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	47		1.0	0.71	mg/L			05/10/21 22:16	1
Fluoride	3.9		0.10	0.026	mg/L			05/10/21 22:16	1
Sulfate	ND		1.0	0.76	mg/L			05/10/21 22:16	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	5.0		0.50	0.13	mg/L		05/13/21 06:59	05/18/21 16:08	1
Boron	ND		0.080	0.039	mg/L		05/13/21 06:59	05/18/21 16:08	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal Dissolved Solids	130		10	10	mg/L			05/11/21 17:32	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa

Job ID: 180-121224-1

Matrix: Water

Lab Sample ID: 180-121224-5

Client Sample ID: MW-5 Date Collected: 05/04/21 14:10 Date Received: 05/06/21 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.6		1.0	0.71	mg/L			05/10/21 14:56	1
Fluoride	0.35		0.10	0.026	mg/L			05/10/21 14:56	1
Sulfate	160		1.0	0.76	mg/L			05/10/21 14:56	1
- Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	100		0.50	0.13	mg/L		05/13/21 06:59	05/18/21 16:12	1
Boron	0.28		0.080	0.039	mg/L		05/13/21 06:59	05/18/21 16:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	580		10	10	mg/L			05/11/21 17:35	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.5	HF	0.1	0.1	SU			05/14/21 10:24	1

Client: Midwest Environmental Consultants Project/Site: Asbury Ash Pond

pН

Job ID: 180-121224-1

Client Sample ID: MW-5A Lab Sample ID: 180-121224-6 Date Collected: 05/04/21 15:05 **Matrix: Water** Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Analyzed Prepared 2.5 1.8 mg/L 05/10/21 21:28 Chloride 110 0.25 0.065 mg/L 05/10/21 21:28 Fluoride 0.33 Sulfate 1500 25 19 mg/L 05/10/21 21:44 Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Analyte Analyzed Calcium 300 0.50 0.13 mg/L 05/13/21 06:59 05/18/21 16:15 0.080 Boron 1.2 0.039 mg/L 05/13/21 06:59 05/18/21 16:15 **General Chemistry** MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed 20 05/12/21 15:46 **Total Dissolved Solids** 2400 H 20 mg/L Analyte

RL **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.1 SU 7.0 HF 0.1 05/14/21 10:30 1

Dil Fac

Dil Fac

Dil Fac

2.5

2.5

25

1

1

1

Job ID: 180-121224-1

Client Sample ID: MW-6 Lab Sample ID: 180-121224-7 Date Collected: 05/04/21 15:55 **Matrix: Water** Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 1.0 0.71 mg/L 05/10/21 19:50 Chloride 14 1 Fluoride 0.10 0.026 mg/L 05/10/21 19:50 0.31 1 Sulfate 1000 10 7.6 mg/L 05/10/21 20:06 10 Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed Calcium 0.50 0.13 mg/L 05/13/21 06:59 05/18/21 16:19 260 1 0.33 0.080 Boron 0.039 mg/L 05/13/21 06:59 05/18/21 16:19 1 **General Chemistry** MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac 05/12/21 15:46 **Total Dissolved Solids** 1700 H 10 10 mg/L 1 RL Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.1 SU pН 7.2 HF 0.1 05/14/21 10:33 1

Client: Midwest Environmental Consultants Project/Site: Asbury Ash Pond Job ID: 180-121224-1

9

Client Sample ID: MW-6A Lab Sample ID: 180-121224-8 Date Collected: 05/04/21 16:35 **Matrix: Water** Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 1.0 0.71 mg/L 05/10/21 18:12 Chloride 28 1 0.10 0.026 mg/L 05/10/21 18:12 Fluoride 0.35 1 Sulfate 850 10 7.6 mg/L 05/10/21 18:28 10 Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed Calcium 0.50 0.13 mg/L 05/13/21 06:59 05/18/21 16:22 180 1 0.38 0.080 Boron 0.039 mg/L 05/13/21 06:59 05/18/21 16:22 1 **General Chemistry** MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac 05/12/21 15:46 **Total Dissolved Solids** 1400 H 10 10 mg/L 1 RL Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.1 SU pН 7.2 HF 0.1 05/14/21 10:36 1

Job ID: 180-121224-1

Matrix: Water

Lab Sample ID: 180-121224-9

Client Sample ID: Dup Date Collected: 05/04/21 00:00 Date Received: 05/06/21 10:15

Date Received: 05/06/21 10:1	5								
Method: EPA 9056A - Anion	s, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24		1.0	0.71	mg/L			05/10/21 16:33	1
Fluoride	0.15		0.10	0.026	mg/L			05/10/21 16:33	1
Sulfate	280		5.0	3.8	mg/L			05/10/21 16:50	5
Method: EPA 6020A - Metals Analyte Calcium	Result 97	Qualifier	RL 0.50	0.13	Unit mg/L	<u>D</u>	Prepared 05/13/21 06:59	Analyzed 05/18/21 16:33	Dil Fac
Boron	0.28		0.080	0.039	mg/L		05/13/21 06:59	05/18/21 16:33	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	580	н	10	10	mg/L			05/12/21 15:46	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.4	HF	0.1	0.1	SU			05/14/21 10:39	1

Job ID: 180-121224-1

Client Sample ID: MW-2 Lab Sample ID: 180-121224-10 Date Collected: 05/04/21 13:30 **Matrix: Water** Date Received: 05/06/21 10:15 Method: EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 1.0 0.71 mg/L 05/10/21 17:39 Chloride 100 1 Fluoride 0.10 0.026 mg/L 05/10/21 17:39 0.37 1 Sulfate 52 1.0 0.76 mg/L 05/10/21 17:39 1 Method: EPA 6020A - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed Calcium 0.50 0.13 mg/L 05/13/21 06:59 05/18/21 16:37 36 1 0.080 Boron 0.13 0.039 mg/L 05/13/21 06:59 05/18/21 16:37 1 **General Chemistry** Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 10 05/12/21 15:46 **Total Dissolved Solids** 410 H 10 mg/L 1 RL Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 0.1 SU pН 6.6 HF 0.1 05/14/21 10:42 1

RL

1.0

0.10

1.0

MDL Unit

0.71 mg/L

0.026 mg/L

0.76 mg/L

Lab Sample ID: MB 180-356264/6

Lab Sample ID: LCS 180-356264/5

Analysis Batch: 356264

Analysis Batch: 356264

Matrix: Water

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Method: EPA 9056A - Anions, Ion Chromatography

MB MB

ND

ND

ND

Result Qualifier

Prep Type: Total/NA

Client Sample ID: Method Blank

Prepared

D

10

Dil Fac

1

1

1

Prep Type: Total/NA 0/ Doo

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Analyzed

05/10/21 09:53

05/10/21 09:53

05/10/21 09:53

Client Sample ID: Lab Control Sample

-		Spike	LCS	LCS				%Rec.		
alyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
loride		50.0	51.8		mg/L		104	80 - 120		
oride		2.50	2.67		mg/L		107	80 - 120		
fate		50.0	52.3		mg/L		105	80 - 120		
	oride oride	oride oride	Alyte Added oride 50.0 oride 2.50	Alded Result oride 50.0 51.8 oride 2.50 2.67	AlyteAddedResultQualifieroride50.051.8	AddedResultQualifierUnitoride50.051.8mg/Loride2.502.67mg/L	AddedResultQualifierUnitDoride50.051.8mg/Loride2.502.67mg/L	Added Result Qualifier Unit D %Rec oride 50.0 51.8 mg/L 104 oride 2.50 2.67 mg/L 107	Added Result Qualifier Unit D %Rec Limits oride 50.0 51.8 mg/L 104 80 - 120 oride 2.50 2.67 mg/L 107 80 - 120	Added Result Qualifier Unit D %Rec Limits oride 50.0 51.8 mg/L 104 80 - 120 oride 2.50 2.67 mg/L 107 80 - 120

Lab Sample ID: 180-121217-F-7 MS **Matrix: Water** Analysis Batch: 356264

	Sample Sa	mple Spike	MS	MS				%Rec.	
Analyte	Result Qu	alifier Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1.9	50.0	53.6		mg/L		103	80 - 120	
Fluoride	0.51	2.50	2.98		mg/L		99	80 - 120	
Sulfate	120	50.0	165		mg/L		93	80 - 120	

Lab Sample ID: 180-121217-F-7 MSD

Matrix: Water Analysis Batch: 356264

Boron

Analysis Batch. 550204	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.9		50.0	50.8		mg/L		98	80 - 120	5	15
Fluoride	0.51		2.50	2.89		mg/L		95	80 - 120	3	15
Sulfate	120		50.0	162		mg/L		88	80 - 120	1	15

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-3 Matrix: Water Analysis Batch: 357468									ble ID: Method e: Total Recov Prep Batch:	verable	
	MB	MB									
Analyte	Result	Qualifier	RL	I	MDL (Unit	D	Р	repared	Analyzed	Dil Fac
Calcium	ND		0.50		0.13 r	ng/L		05/1	3/21 06:59	05/18/21 14:56	1
Boron	ND		0.080	0	.039 r	ng/L		05/1	3/21 06:59	05/18/21 14:56	1
Lab Sample ID: LCS 180-3	356758/2-A						Clien	t Sai	nple ID:	Lab Control S	Sample
Matrix: Water								F	Prep Type	e: Total Recov	verable
Analysis Batch: 357468										Prep Batch:	356758
-			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Quali	fier	Unit	D	%Rec	Limits	
Calcium			25.0	26.6			mg/L		106	80 - 120	

80 - 120

90

1.12

mg/L

1.25

Job ID: 180-121224-1

Method: EPA 6020A - Metals (ICP/MS) (Continued)

	7-D-9-B MS								mple ID: N		
Matrix: Water							P	rep Ty	pe: Total F		
Analysis Batch: 357468									Prep Ba	itch: 3	56758
		Sample	Spike	_	MS				%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Calcium	30		25.0	56.8		mg/L		109	75 - 125		
Boron	0.043	J	1.25	1.17		mg/L		90	75 - 125		
Lab Sample ID: 180-121217	7-D-9-C MS	D				Client S	Samp	le ID: N	latrix Spik	ke Dup	licat
Matrix: Water									pe: Total F		
Analysis Batch: 357468									Prep Ba		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RP
Analyte		Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Calcium	30		25.0	55.7		mg/L		104	75 - 125	2	2
Boron	0.043	I	1.25	1.17		mg/L		90	75 - 125	0	2
		J	1.25	1.17		mg/∟		90	75-125	0	2
lethod: EPA 9040C - pl	H										
Lab Sample ID: LCS 180-3	56923/1					Clier	nt Sar	nple ID	: Lab Con		
Matrix: Water									Prep Ty	pe: Tot	al/N
Analysis Batch: 356923											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
рН			7.00	7.0		SU		100	99 - 101		
Lab Sample ID: 180-121224 Matrix: Water	+-5 D0							CI	ient Samp Prep Tyj		
Analysis Batch: 356923	0	0		5.1	BU						
		Sample			DU		_				
Analyte	Result	Qualifier		Result	DU Qualifier	Unit	D			RPD	Lim
Analyte		Qualifier				Unit SU	<u>D</u>			RPD 0.1	Lim
Analyte pH	Result 7.5	Qualifier HF	ed (TDS	Result 7.5			<u>D</u>				Lim
Analyte pH Method: SM 2540C - So Lab Sample ID: MB 180-35	Result 7.5	Qualifier HF	ed (TDS	Result 7.5				ent Sam	nple ID: M	0.1	Lim
Analysis Batch: 356923 Analyte pH Aethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water	Result 7.5	Qualifier HF	ed (TDS	Result 7.5				ent Sam	nple ID: Mo Prep Tyj	0.1	Lim
Analyte pH Method: SM 2540C - So Lab Sample ID: MB 180-35	Result 7.5	Qualifier HF	ed (TDS	Result 7.5				ent Sam	-	0.1	Lim
Analyte pH Iethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water Analysis Batch: 356535	Result 7.5 lids, Tota 6535/2	Qualifier HF		Result 7.5	Qualifier	SU	Clie		Prep Ty	0.1 ethod pe: Tot	Lim Blank al/N/
Analyte pH lethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water Analysis Batch: 356535 Analyte	Result 7.5 lids, Tota 6535/2	Qualifier HF		Result 7.5	Qualifier MDL Unit	SU D	Clie	ent Sam	-	0.1 ethod pe: Tot	Lim Blan al/N
Analyte pH Iethod: SM 2540C - So Lab Sample ID: MB 180-35 Matrix: Water	Result 7.5 lids, Tota 6535/2	Qualifier HF		Result 7.5	Qualifier	SU D	Clie		Prep Ty	0.1 ethod pe: Tot	Lim Blan al/N/
Analyte pH Iethod: SM 2540C - So Lab Sample ID: MB 180-35 Matrix: Water Analysis Batch: 356535 Analyte	Result 7.5 lids, Tota 6535/2	Qualifier HF IDissolv MB MB esult Qualifie		Result 7.5	Qualifier MDL Unit	SU	Clie	repared	Prep Ty	0.1 ethod pe: Tot red 17:32	Lim Blan al/N
Analyte pH lethod: SM 2540C - So Lab Sample ID: MB 180-350 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-35	Result 7.5 lids, Tota 6535/2	Qualifier HF IDissolv MB MB esult Qualifie		Result 7.5	Qualifier MDL Unit	SU	Clie	repared	Prep Ty <u>Analyz</u> 05/11/21 : Lab Con	ethod pe: Tot red 17:32 -	Lim Blan al/N Dil Fa
Analyte pH Iethod: SM 2540C - So Lab Sample ID: MB 180-350 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-38 Matrix: Water	Result 7.5 lids, Tota 6535/2	Qualifier HF IDissolv MB MB esult Qualifie		Result 7.5	Qualifier MDL Unit	SU	Clie	repared	Prep Typ Analyz 	ethod pe: Tot red 17:32 -	Lim Blan al/N Dil Fa
Analyte pH Iethod: SM 2540C - So Lab Sample ID: MB 180-350 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-38 Matrix: Water	Result 7.5 lids, Tota 6535/2	Qualifier HF IDissolv MB MB esult Qualifie	r	Result 7.5) RL 10	Qualifier MDL Unit	SU	Clie	repared	Prep Ty <u>Analyz</u> 05/11/21 : Lab Con	ethod pe: Tot red 17:32 -	Lim Blan al/N Dil Fa
Analyte pH lethod: SM 2540C - So Lab Sample ID: MB 180-350 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-35 Matrix: Water Analysis Batch: 356535	Result 7.5 lids, Tota 6535/2	Qualifier HF IDissolv MB MB esult Qualifie	r Spike	Result 7.5)	Qualifier MDL Unit 10 mg/L LCS	SU D Clier	Clie	repared mple ID	Prep Ty Analyz 05/11/21 : Lab Con Prep Ty %Rec.	ethod pe: Tot red 17:32 -	Lim Blank al/N/ Dil Fa
Analyte pH Iethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids	Result 7.5 lids, Tota 6535/2	Qualifier HF IDissolv MB MB esult Qualifie	r	Result 7.5)	Qualifier MDL Unit 10 mg/L	SU	Clie	repared	Prep Ty Analyz 05/11/21 : Lab Con Prep Ty	ethod pe: Tot red 17:32 -	Dil Fa
Analyte pH lethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-38 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: 180-121224	Result 7.5 11ds, Tota 6535/2 56535/1	Qualifier HF IDissolv MB MB esult Qualifie	r Spike Added	Result 7.5 () () () () () () () () () () () () ()	Qualifier MDL Unit 10 mg/L LCS	SU Clier Unit	Clie	mple ID	Prep Ty Analyz 05/11/21 : Lab Con Prep Ty %Rec. Limits	ethod pe: Tot 17:32 - htrol Sa pe: Tot	Lim Blan al/N/ Dil Fa ampl cal/N/
Analyte DH Iethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-38 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: 180-121224 Matrix: Water	Result 7.5 11ds, Tota 6535/2 56535/1	Qualifier HF IDissolv MB MB esult Qualifie	r Spike Added	Result 7.5 () () () () () () () () () () () () ()	Qualifier MDL Unit 10 mg/L LCS	SU Clier Unit	Clie	mple ID	Prep Ty <u>Analyz</u> 05/11/21 : Lab Con Prep Ty %Rec. Limits 80 - 120	ethod pe: Tot 2ed 17:32 - htrol Sa pe: Tot	Lim Blan al/N, Dil Fa ampl al/N,
Analyte pH lethod: SM 2540C - So Lab Sample ID: MB 180-356 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-38 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: 180-121224 Matrix: Water	Result 7.5 Iids, Tota 6535/2	Qualifier HF I Dissolv MB MB esult ND Qualifie	r Spike Added	Result 7.5)	Qualifier MDL Unit 10 mg/L LCS Qualifier	SU Clier Unit	Clie	mple ID	Prep Ty Analyz 05/11/21 : Lab Con Prep Ty %Rec. Limits 80 - 120 ient Samp	ethod pe: Tot 2ed 17:32 - htrol Sa pe: Tot	Lim Blank al/N/ Dil Fa ample al/N/
Analyte pH lethod: SM 2540C - So Lab Sample ID: MB 180-350 Matrix: Water Analysis Batch: 356535 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-35 Matrix: Water Analysis Batch: 356535 Analyte	Result 7.5 Iids, Tota 6535/2 Re 56535/1 4-1 DU Sample	Qualifier HF IDissolv MB MB esult Qualifie	r Spike Added	Result 7.5)	Qualifier MDL Unit 10 mg/L LCS	SU Clier Unit	Clie	mple ID	Prep Ty Analyz 05/11/21 : Lab Con Prep Ty %Rec. Limits 80 - 120 ient Samp	ethod pe: Tot 2ed 17:32 - htrol Sa pe: Tot	Lim Blan al/N/ Dil Fa ample al/N/

10

QC Sample Results

Job ID: 180-121224-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 180-12122 Matrix: Water Analysis Batch: 356535	4-2 DU								CI	ient Sample ID Prep Type: T	
	Sample	Sample			U DU						RPD
Analyte	Result	Qualifier		Res	ilt Qu	alifier	Unit		2	RP	D Limit
Total Dissolved Solids	1300			12	30		mg/L			0.	9 10
Lab Sample ID: MB 180-35 Matrix: Water Analysis Batch: 356698	6698/2							CI	ient San	ple ID: Metho Prep Type: T	
		MB MB									
Analyte	Re	esult Qualifier		RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids		ND		10	10	mg/L				05/12/21 15:46	1
Lab Sample ID: LCS 180-3 Matrix: Water Analysis Batch: 356698	56698/1						Clie	ent S	ample ID	: Lab Control Prep Type: T	
			Spike	LC	S LC	S				%Rec.	
Analyte			Added	Res	ilt Qu	alifier	Unit	[D %Rec	Limits	
Total Dissolved Solids			486	5	26		mg/L		108	80 - 120	
Lab Sample ID: 180-12126 Matrix: Water Analysis Batch: 356698	5-A-8 DU								Client	Sample ID: Du Prep Type: T	-
	Sample	Sample		[U DU						RPD
Analyte	Result	Qualifier		Res	ilt Qu	alifier	Unit)	RP	D Limit

QC Association Summary

HPLC/IC

Analysis Batch: 356264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-1	MW-3	Total/NA	Water	EPA 9056A	
180-121224-1	MW-3	Total/NA	Water	EPA 9056A	
180-121224-2	MW-4	Total/NA	Water	EPA 9056A	
180-121224-2	MW-4	Total/NA	Water	EPA 9056A	
180-121224-3	MW-7	Total/NA	Water	EPA 9056A	
180-121224-3	MW-7	Total/NA	Water	EPA 9056A	
180-121224-4	Field Blank	Total/NA	Water	EPA 9056A	
180-121224-5	MW-5	Total/NA	Water	EPA 9056A	
180-121224-6	MW-5A	Total/NA	Water	EPA 9056A	
180-121224-6	MW-5A	Total/NA	Water	EPA 9056A	
180-121224-7	MW-6	Total/NA	Water	EPA 9056A	
180-121224-7	MW-6	Total/NA	Water	EPA 9056A	
180-121224-8	MW-6A	Total/NA	Water	EPA 9056A	
180-121224-8	MW-6A	Total/NA	Water	EPA 9056A	
180-121224-9	Dup	Total/NA	Water	EPA 9056A	
180-121224-9	Dup	Total/NA	Water	EPA 9056A	
180-121224-10	MW-2	Total/NA	Water	EPA 9056A	
MB 180-356264/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-356264/5	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-121217-F-7 MS	Matrix Spike	Total/NA	Water	EPA 9056A	
180-121217-F-7 MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 356758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-1	MW-3	Total Recoverable	Water	3005A	
180-121224-2	MW-4	Total Recoverable	Water	3005A	
180-121224-3	MW-7	Total Recoverable	Water	3005A	
180-121224-4	Field Blank	Total Recoverable	Water	3005A	
180-121224-5	MW-5	Total Recoverable	Water	3005A	
180-121224-6	MW-5A	Total Recoverable	Water	3005A	
180-121224-7	MW-6	Total Recoverable	Water	3005A	
180-121224-8	MW-6A	Total Recoverable	Water	3005A	
180-121224-9	Dup	Total Recoverable	Water	3005A	
180-121224-10	MW-2	Total Recoverable	Water	3005A	
MB 180-356758/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-356758/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
180-121217-D-9-B MS	Matrix Spike	Total Recoverable	Water	3005A	
180-121217-D-9-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 357468

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-1	MW-3	Total Recoverable	Water	EPA 6020A	356758
180-121224-2	MW-4	Total Recoverable	Water	EPA 6020A	356758
180-121224-3	MW-7	Total Recoverable	Water	EPA 6020A	356758
180-121224-4	Field Blank	Total Recoverable	Water	EPA 6020A	356758
180-121224-5	MW-5	Total Recoverable	Water	EPA 6020A	356758
180-121224-6	MW-5A	Total Recoverable	Water	EPA 6020A	356758
180-121224-7	MW-6	Total Recoverable	Water	EPA 6020A	356758
180-121224-8	MW-6A	Total Recoverable	Water	EPA 6020A	356758

Metals (Continued)

Analysis Batch: 357468 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-9	Dup	Total Recoverable	Water	EPA 6020A	356758
180-121224-10	MW-2	Total Recoverable	Water	EPA 6020A	356758
MB 180-356758/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	356758
LCS 180-356758/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	356758
180-121217-D-9-B MS	Matrix Spike	Total Recoverable	Water	EPA 6020A	356758
180-121217-D-9-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	EPA 6020A	356758

General Chemistry

Analysis Batch: 356535

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-1	MW-3	Total/NA	Water	SM 2540C	
180-121224-2	MW-4	Total/NA	Water	SM 2540C	
180-121224-3	MW-7	Total/NA	Water	SM 2540C	
180-121224-4	Field Blank	Total/NA	Water	SM 2540C	
180-121224-5	MW-5	Total/NA	Water	SM 2540C	
MB 180-356535/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-356535/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-121224-1 DU	MW-3	Total/NA	Water	SM 2540C	
180-121224-2 DU	MW-4	Total/NA	Water	SM 2540C	

Analysis Batch: 356698

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-6	MW-5A	Total/NA	Water	SM 2540C	
180-121224-7	MW-6	Total/NA	Water	SM 2540C	
180-121224-8	MW-6A	Total/NA	Water	SM 2540C	
180-121224-9	Dup	Total/NA	Water	SM 2540C	
180-121224-10	MW-2	Total/NA	Water	SM 2540C	
MB 180-356698/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-356698/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-121265-A-8 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 356923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-121224-1	MW-3	Total/NA	Water	EPA 9040C	
180-121224-2	MW-4	Total/NA	Water	EPA 9040C	
180-121224-3	MW-7	Total/NA	Water	EPA 9040C	
180-121224-4	Field Blank	Total/NA	Water	EPA 9040C	
180-121224-5	MW-5	Total/NA	Water	EPA 9040C	
180-121224-6	MW-5A	Total/NA	Water	EPA 9040C	
180-121224-7	MW-6	Total/NA	Water	EPA 9040C	
180-121224-8	MW-6A	Total/NA	Water	EPA 9040C	
180-121224-9	Dup	Total/NA	Water	EPA 9040C	
180-121224-10	MW-2	Total/NA	Water	EPA 9040C	
LCS 180-356923/1	Lab Control Sample	Total/NA	Water	EPA 9040C	
180-121224-5 DU	MW-5	Total/NA	Water	EPA 9040C	

Job ID: 180-121224-1

11 12 13

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Client Information	Sampler: RE& R Phone: 573 - 636	0	Lab PM: Gartner,	Cathy			- ^	Carrier Tracking No(s):		OC No: 90-52767-15725.1
Client Contact: Mr. Rick Elgin	Phone: 573-636	-9454	E-Mail: cathy.ga	artner@1	testame	ericainc c	om			age: age 1 of 1
Company: Midwest Environmental Consultants								equested		bb #:
Address: 2009 East McCarty Street Suite 2	Due Date Requested:	tuen							P	reservation Codes:
City:	TAT Requested (days):	100.0								A - HCL M - Hexane B - NaOH N - None
Jefferson City State, Zip:	-								C	C - Zn Acetate O - AsNaO2 O - Nitric Acid P - Na2O4S
MO, 65101 Phone:	PO #:			1		Solids			E	- NaHSO4 Q - Na2SO3 - MeOH R - Na2S2O3
573-636-9454(Tel) Email:	Purchase Order not require	d	0	4	Sulfate	ed S			G	G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
relgin@mecpc.com	WO #:		s or h	No)	, Sul	solv	Boron		yn J	- Ice U - Acetone - DI Water V - MCAA
Project Name: Asbury Ash Pond	Project #: 49010011		e (Ye:	s or	Fluoride,	Dis	and Bo			K - EDTA W - ph 4-5 - EDA Z - other (specify)
Site:	SSOW#:			D (Ye	Fluc	- Total Dissolved	Caar			ther:
		Ma	atrix	WS/WSD ()	Chloride,	lcd -			ber of	
		Type (w=	water,	rm M	Chlo		Meta		Numt	
Sample Identification	Sample Date Time		aste/oil,	Perform	9056	2540C_Calcd	6020 Metals		Total	Special Instructions (Notes)
	\times	Preservation C		X	N		5		X	Special Instructions/Note:
mw-2	S RI	quy	0						F	Field pH:
MW-3	5-5-21	G n	2		L	l	2	0-121	F	ield pH:
MW-4	5-5-21	G U			1	1	1	122	F	ield pH:
A								Chain	F	ield pH:
Miller									F	ield pH:
marco									F	ïeld pH:
Atte 6A								Custody	F	ield pH:
MU-7	5-5-21	GNOB	'n1		T	1	1		F	ield pH:
Duo (CAU):			~			+			F	ield pH:
Field BLAAK	5-5-21	4			11	-11-	1			ield pH:
									F	ield pH:
Possible Hazard Identification				Sample	e Dispo	sal (A f	ee may be	assessed if samples are re		
Non-Hazard Flammable Skin Irritant Pou	son B Unknown	Radiological			Return T	o Client		🗘 Disposal By Lab	Archive	For Months
Empty Kit Relinquished by:	Data				Instruct	tions/QC	Requirem	nents: 6020A/6010C - Sb,As,E	Ba,Be,E	3,Cd,Ca,Cr,Co,Pb,,Mo, Li
Relinquished by:	Date:		Tim		eived by:	~ 7		Method of Shipment:		
Relinquished by:			ec		1	PA	EX	Date/Time:	21	4:00 Company CY
	Date/Time:	Compa	апу	Rece	eived by:	6	1	Date/Time:	1	1015 Company Pit
Relinquished by:	Date/Time:	Compa	any	Rece	eived by	2		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:				Cool	ler Tempe	erature(s)	C and Other	Remarks:		
						_	_			

13 12

6/11/2021

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

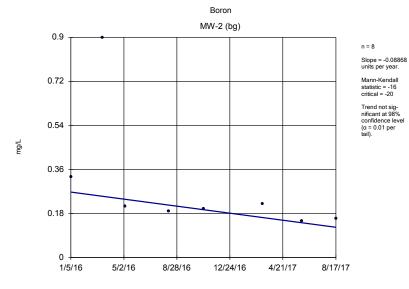
Login Number: 121224 List Number: 1 Creator: Abernathy, Eric

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

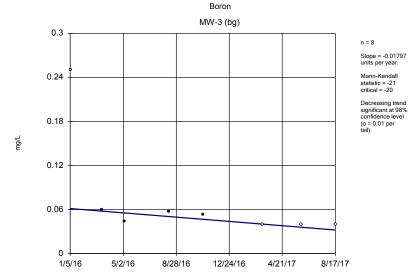
Job Number: 180-121224-1

List Source: Eurofins TestAmerica, Pittsburgh

APPENDIX 5

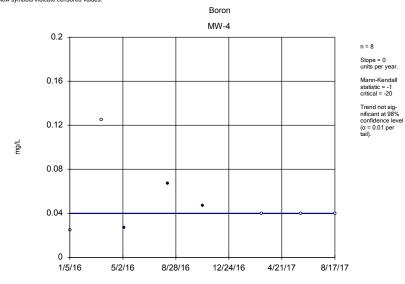

Statistical Analysis

Sanitas[™] Output – Background


Trending Analysis

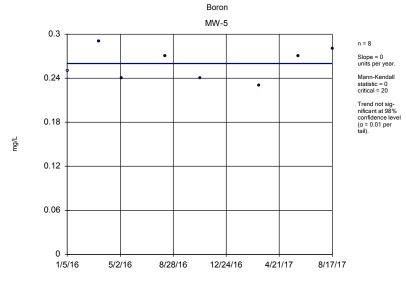
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

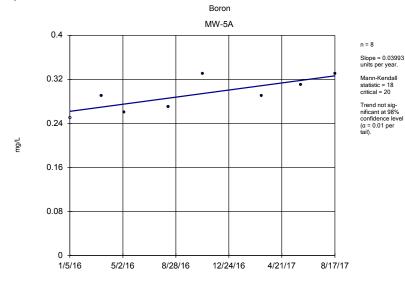
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

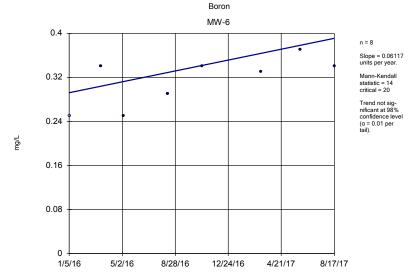

Sanitas¹¹⁴ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

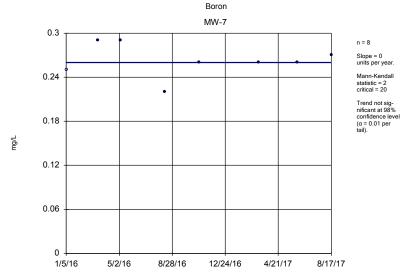
Sanitas¹⁰ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

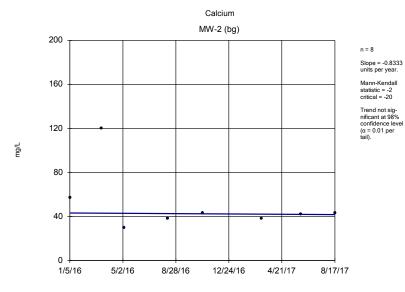
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

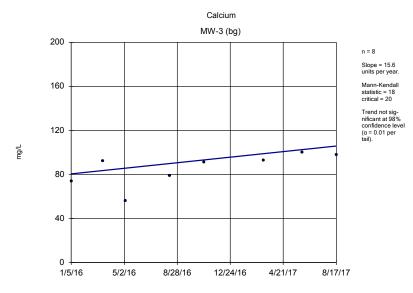
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

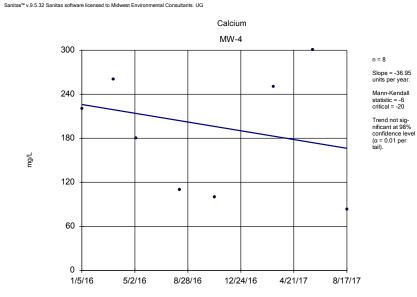


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

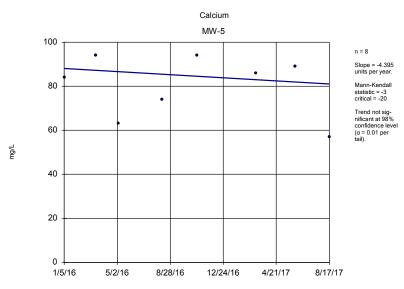

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

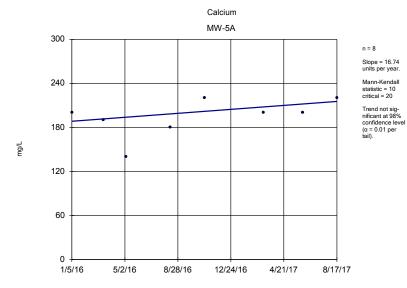
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

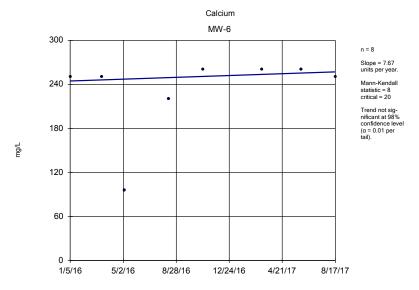
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

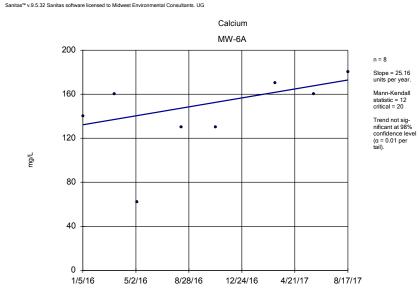
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

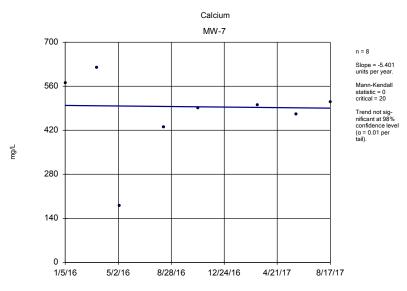

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

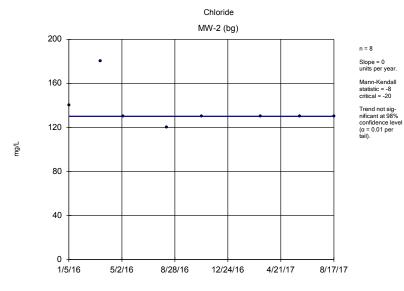


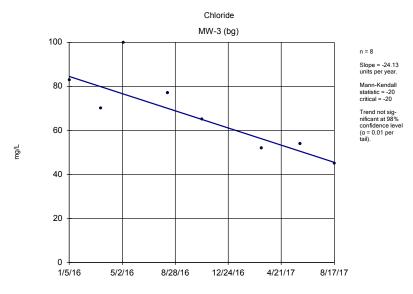
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

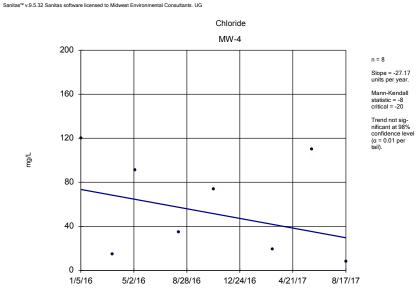
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

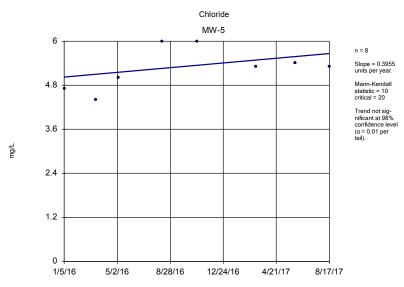

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

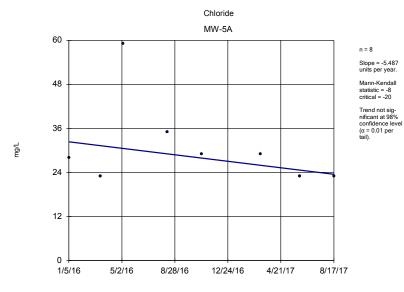

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

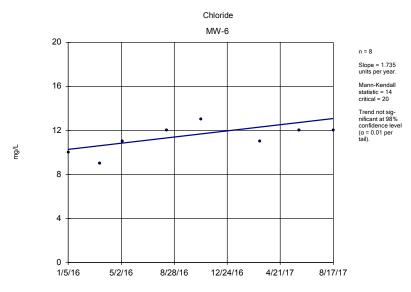
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

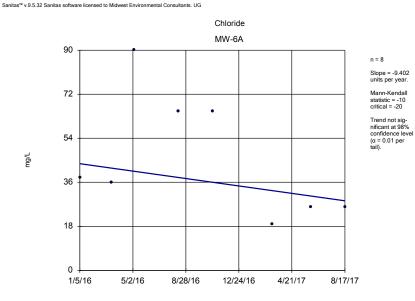
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

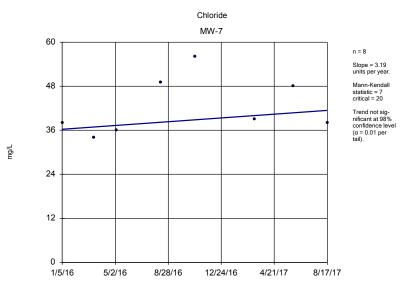


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

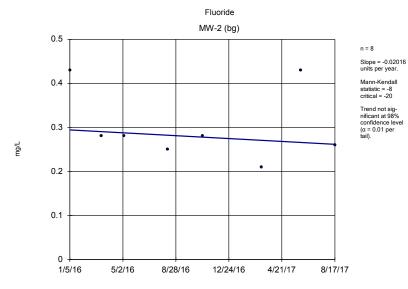
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

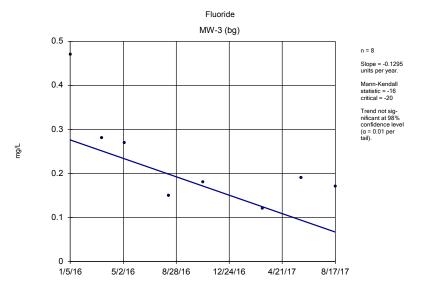

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

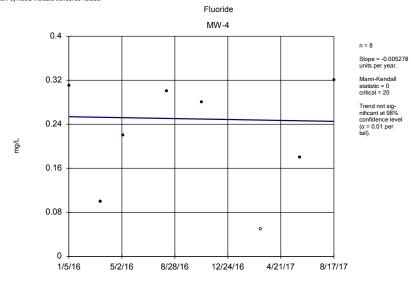
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

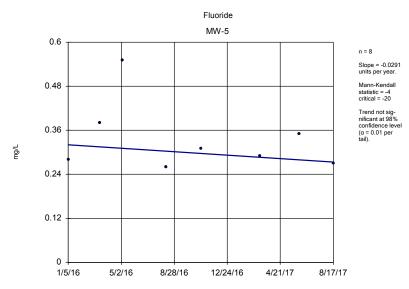
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

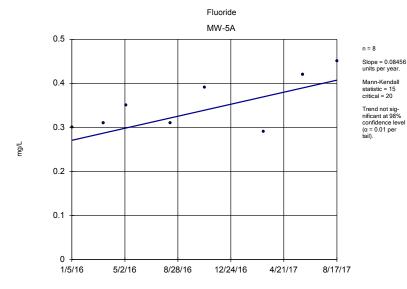

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

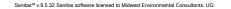
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

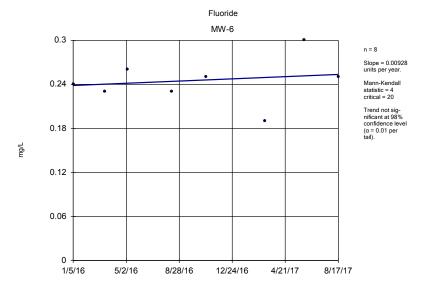
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

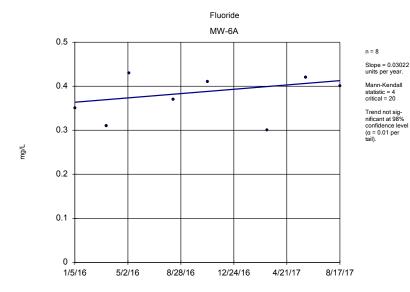

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

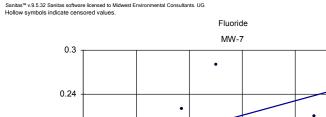

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



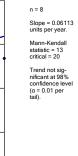

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

0.18

0.12


0.06

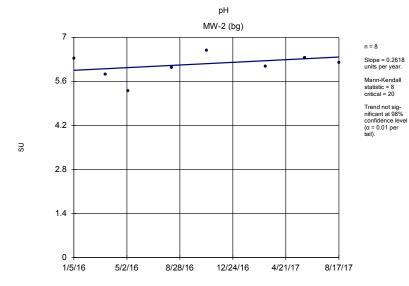
0

1/5/16

5/2/16

ng/L

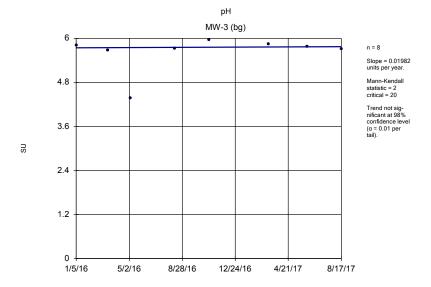
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


12/24/16

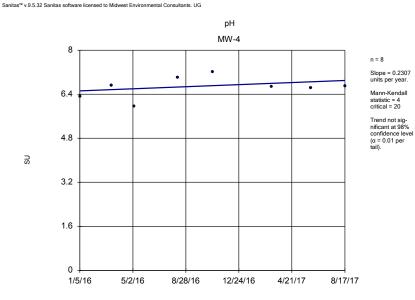
4/21/17

8/17/17

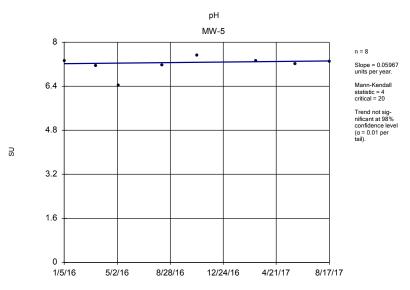
8/28/16


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

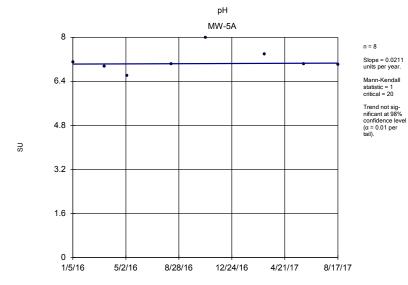
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

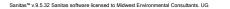

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

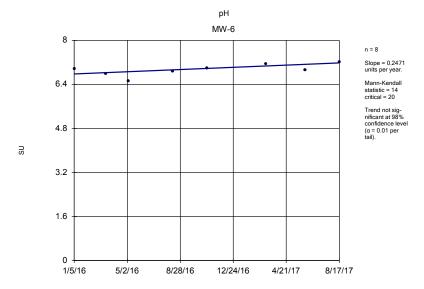
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

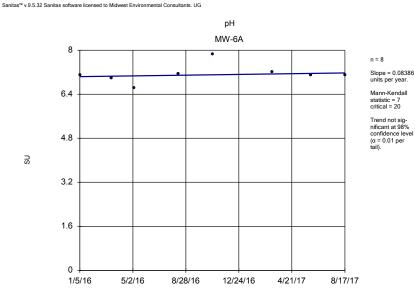

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

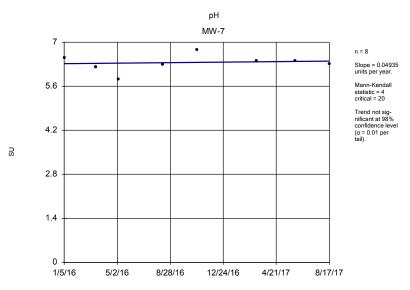


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

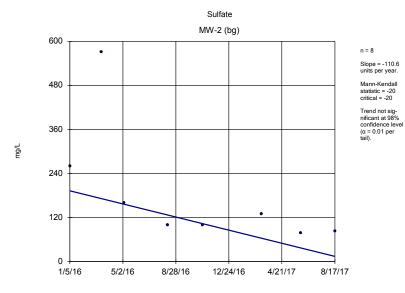


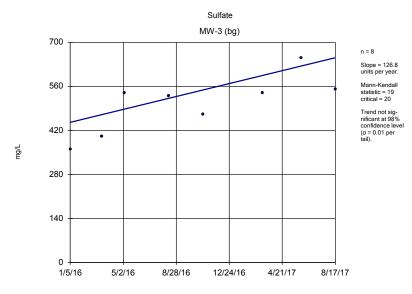
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

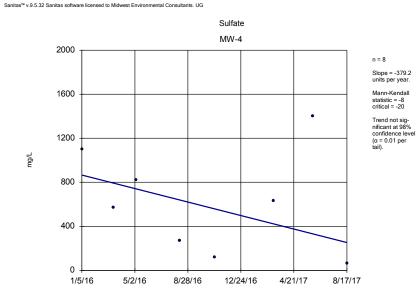
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

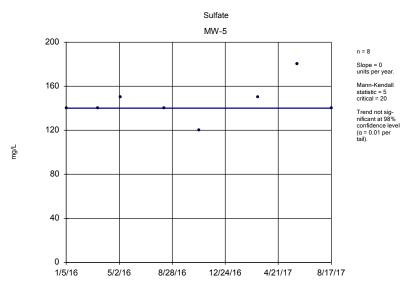

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



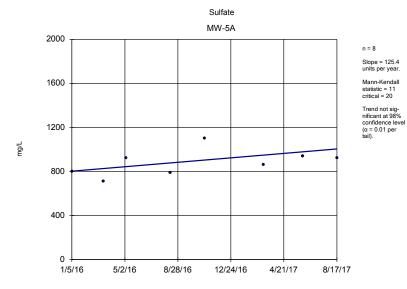
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

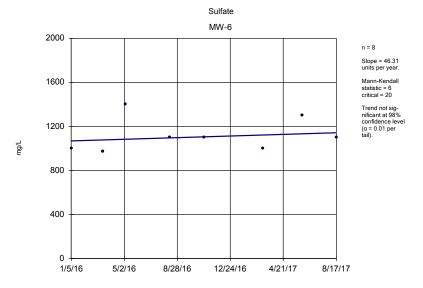
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

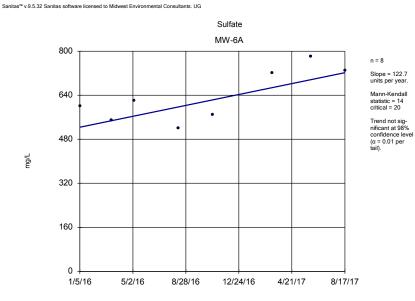

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

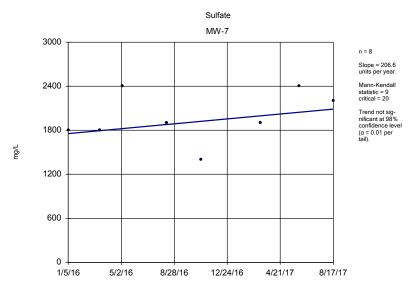


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

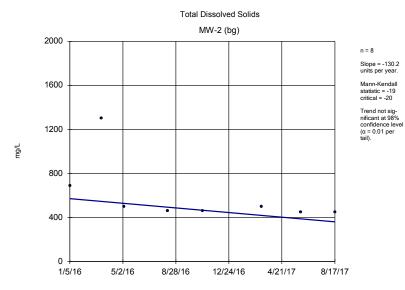
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



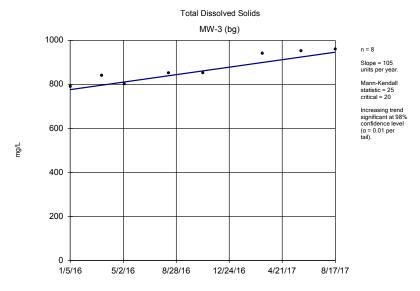
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

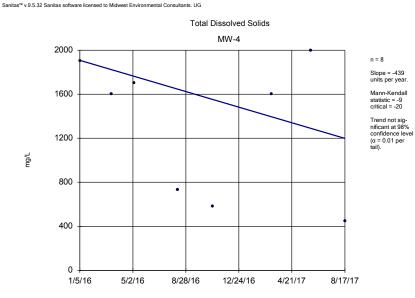
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

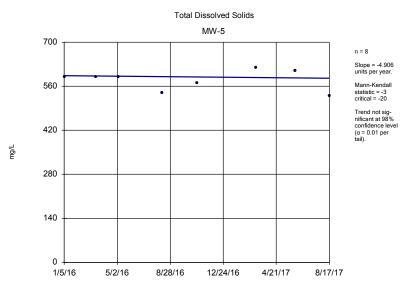

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

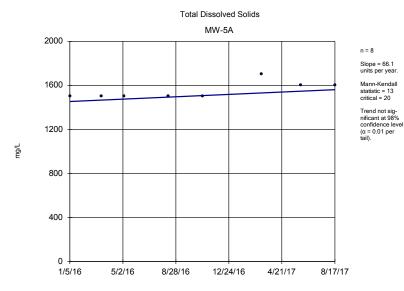


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

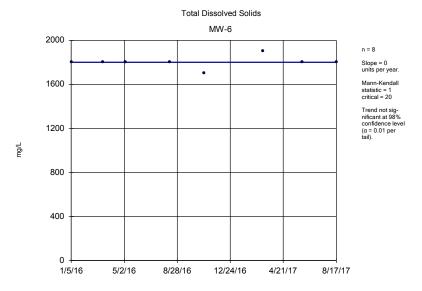

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

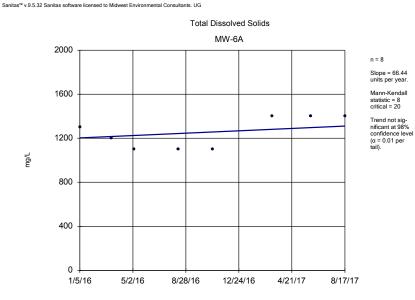

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



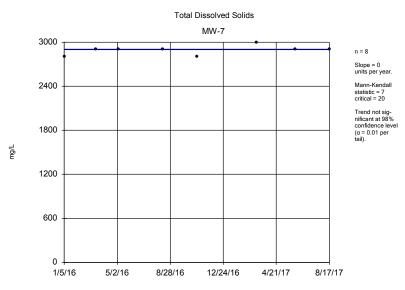
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

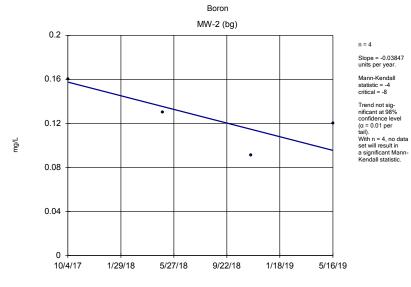
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:09 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

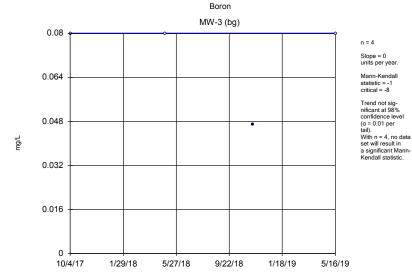
Trend Test


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3 only Printed 1/23/2018, 3:10 PM

	The Empire District	Client: Midwest Env	Ironmental Const	litants l	Jata: Asbury CCR In	npounamer	IS GW B	aseline Datat	base - App 3 on	ly Printed 1	(23/2018, 3:10 P	VI
<u>Constituent</u>		Well	<u>Slope</u>	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP

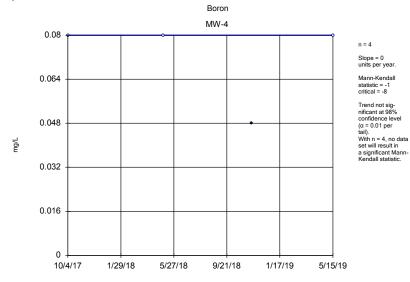
Trend Test

	The Empire District	Client: Midwest Environmental Consultants D			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only						Printed 1/23/2018, 3:10 PM		
<u>Constituent</u>		Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP	


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

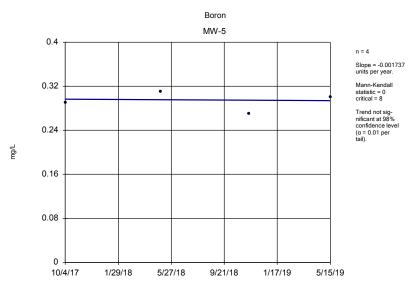
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

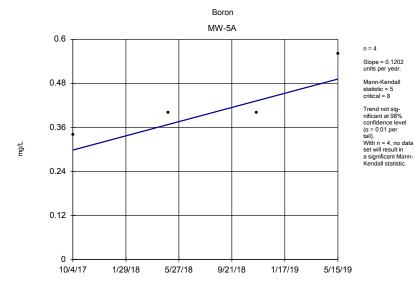
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

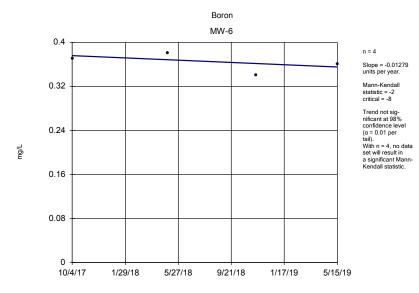
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

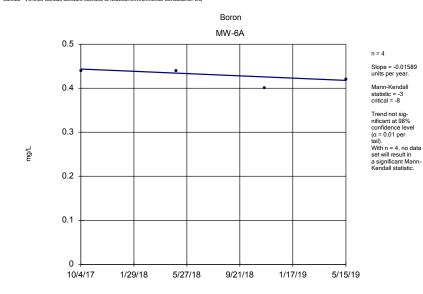

Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

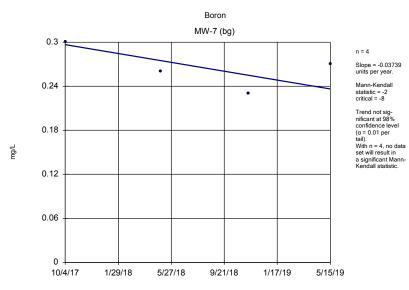

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

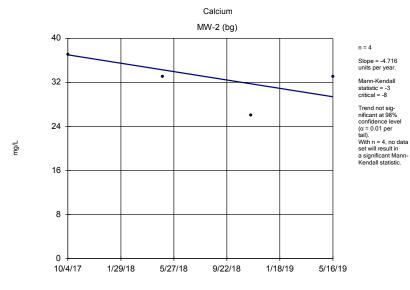

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

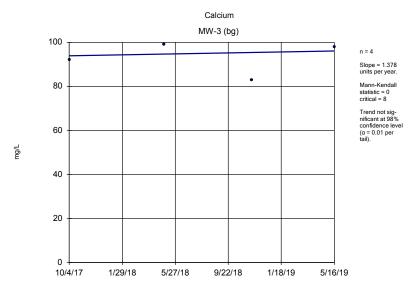
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

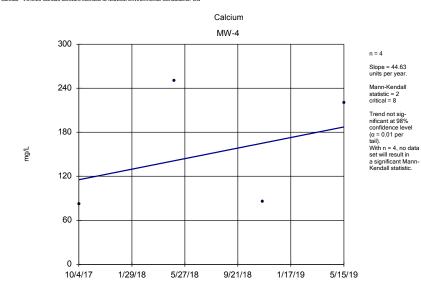
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

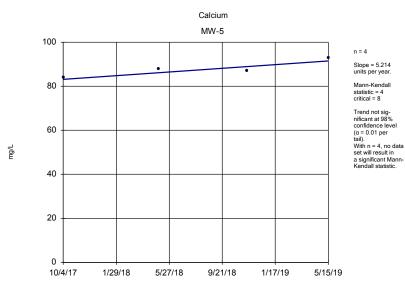
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

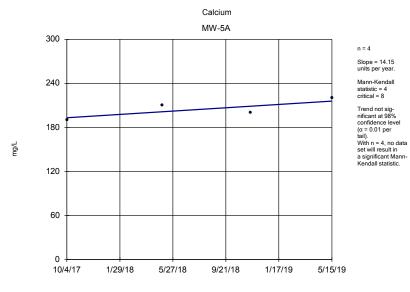


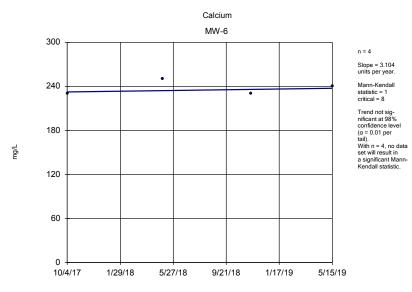
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

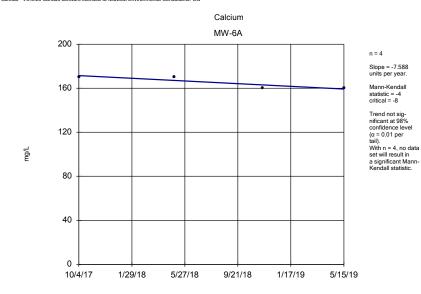
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

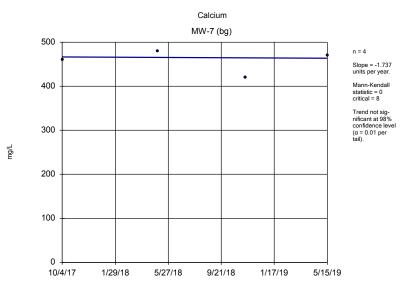
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

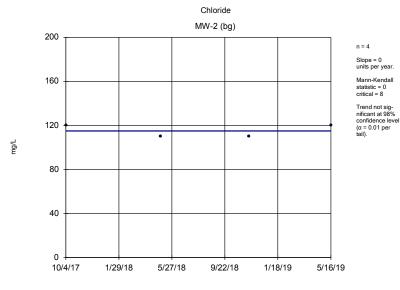


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

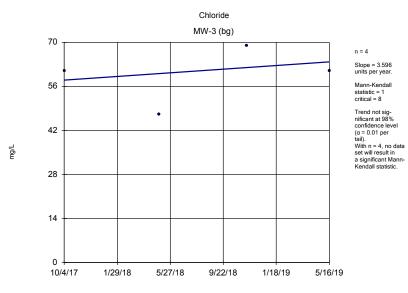
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

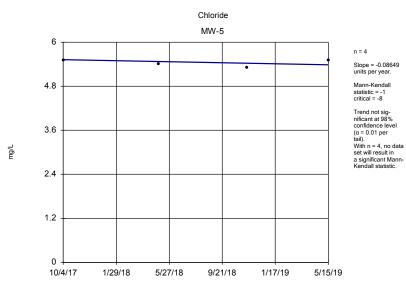

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

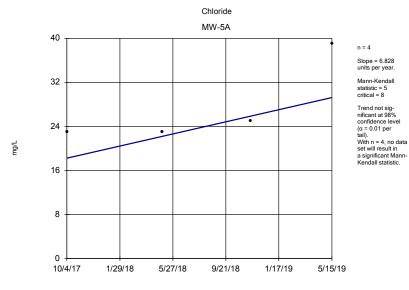


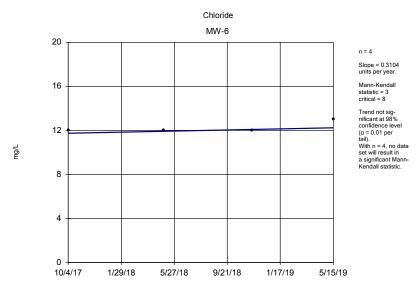
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

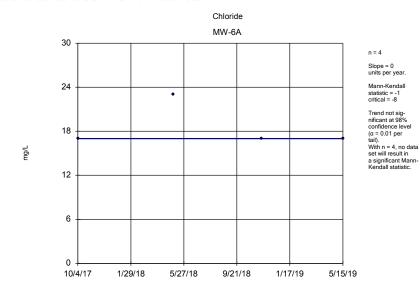

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

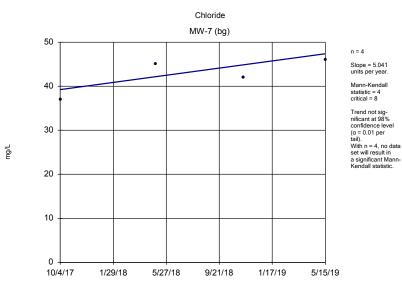
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

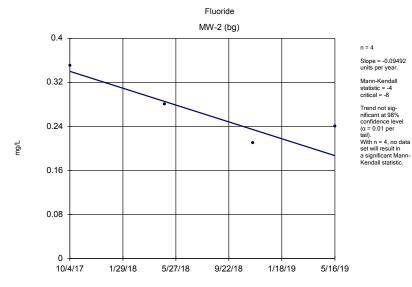
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

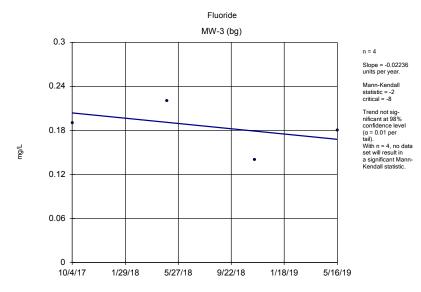
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

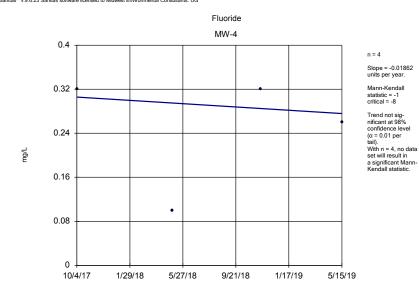
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

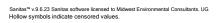

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

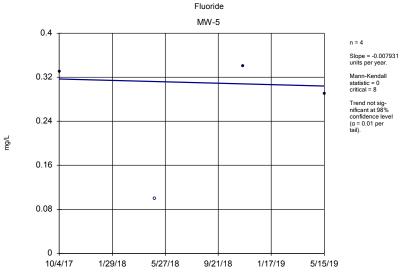
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

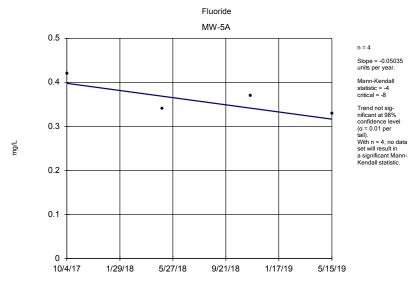

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

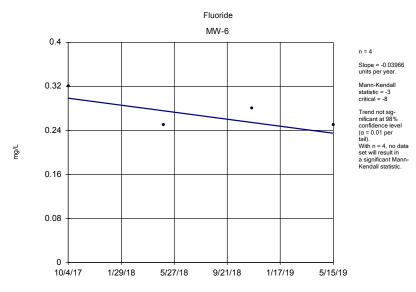
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

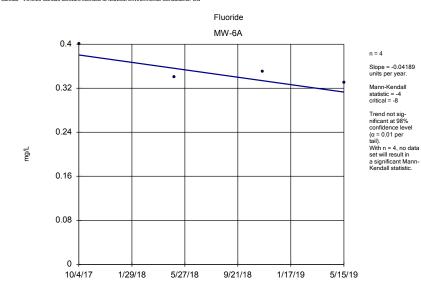
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background



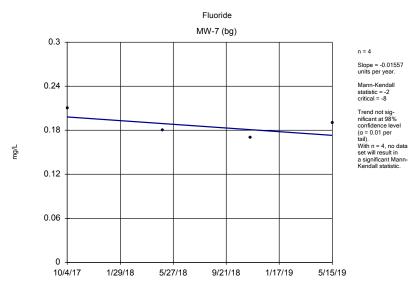
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

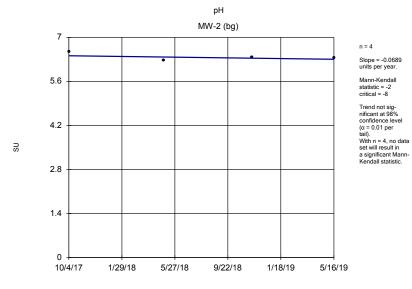
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

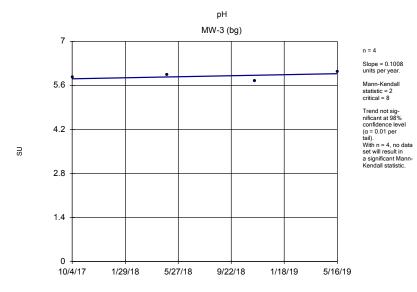


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

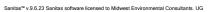
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

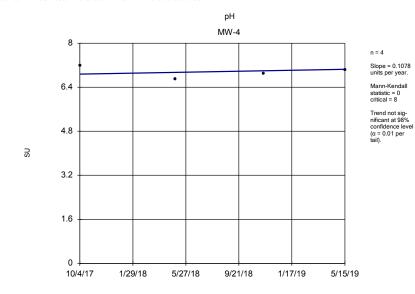

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

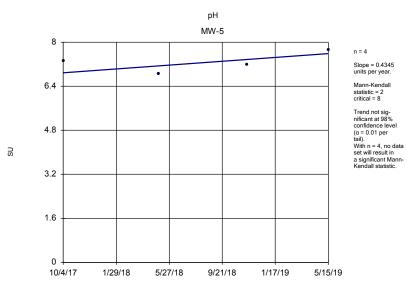
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

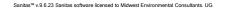


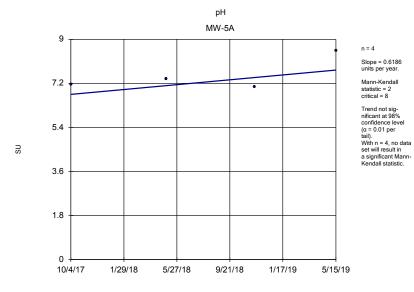


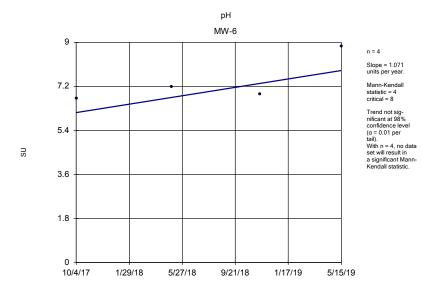
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

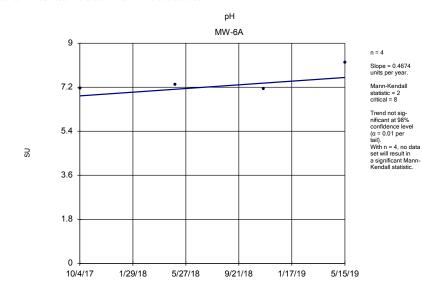





 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

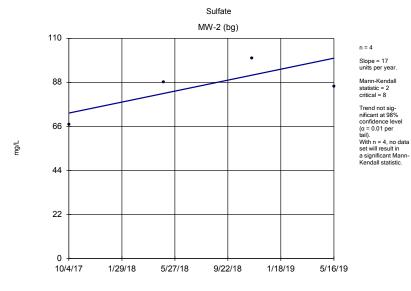


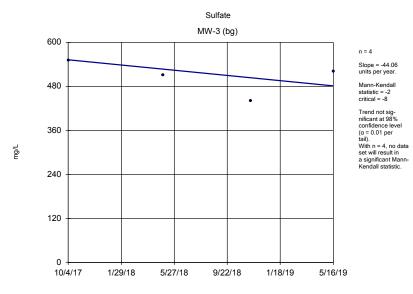
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

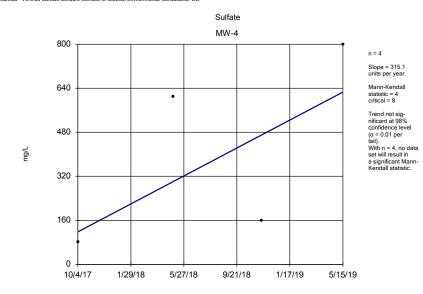
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

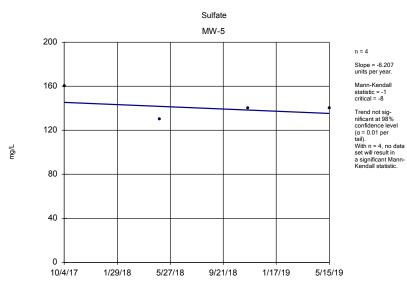
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

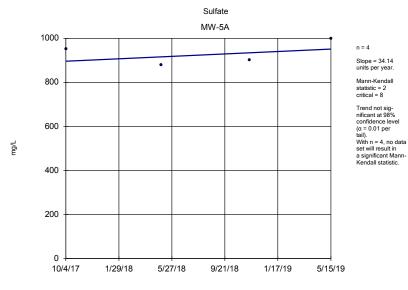


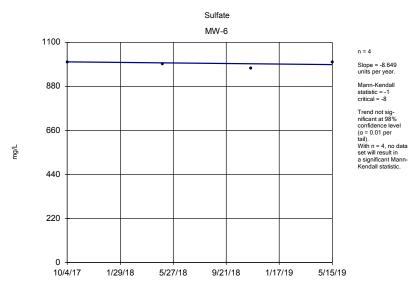
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas¹¹⁴ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

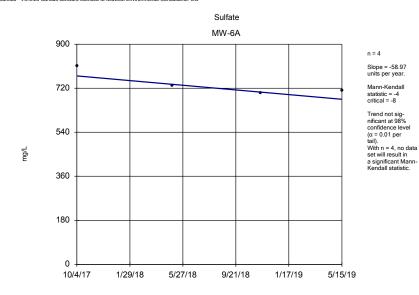
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

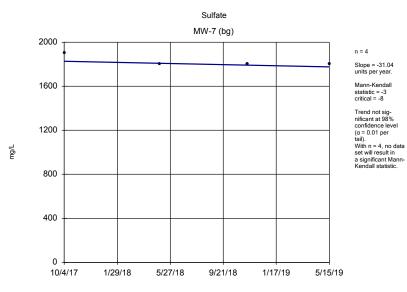
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

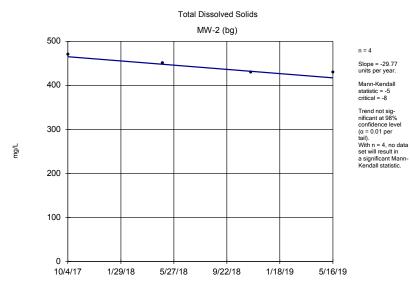
Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



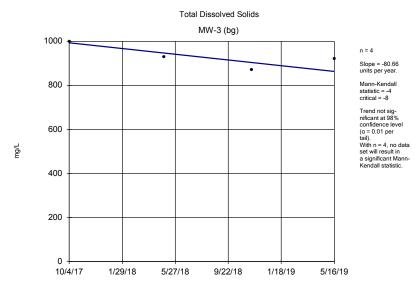
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

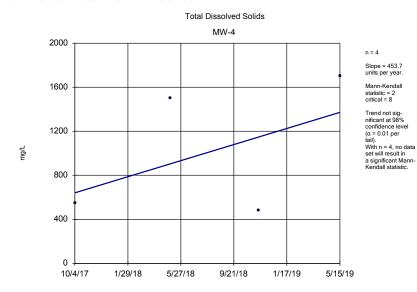

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

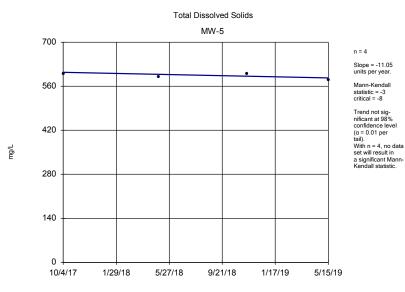

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

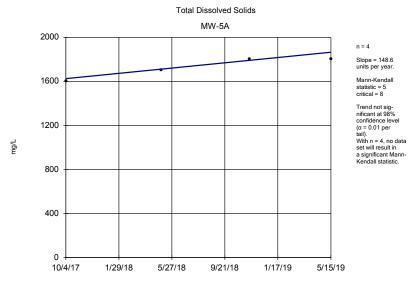

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

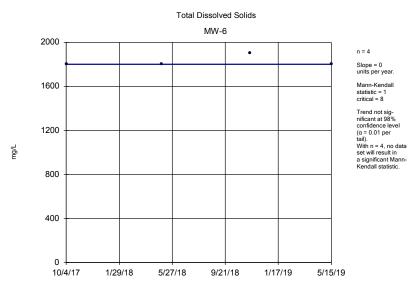
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

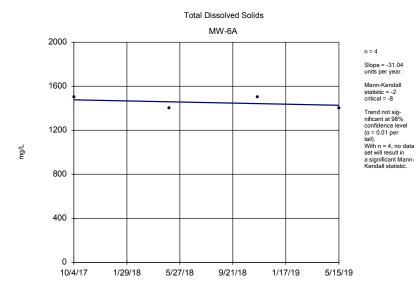

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

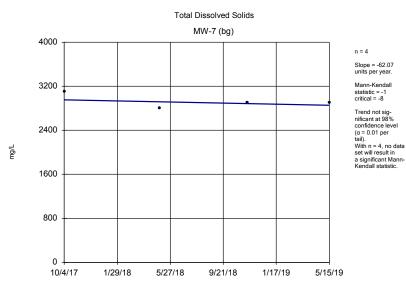

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Trend Test

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM

	The Empire District Client. Mi			nis Dala. 11-	19 App 3 A	soury por	us with backy		u 12/4/2019, 2	. 13 F W	
<u>Constituent</u>	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	-1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	315.1	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	-6.207	-1 2	-8	No	4	0	n/a	n/a n/a	0.02	NP
Sulfate (mg/L)	MW-5A	34.14	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	-8.649	-1	-8	No	4	0	n/a	n/a n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4 4	0	n/a	n/a n/a	0.02	NP
Sulfate (mg/L) Total Dissolved Solids (mg/L)	MW-7 (bg)	-31.04	-3 F	-8	No		0	n/a	n/a n/a	0.02	NP
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	MW-2 (bg) MW-3 (bg)	-29.77 -80.66	-5 4	-8 -8	No	4 4	0 0	n/a n/a	n/a n/a	0.02 0.02	NP NP
Total Dissolved Solids (Hig/L)	www-s (by)	-00.00	-4	-0	No	4	U	n/a	n/a	0.02	INF"

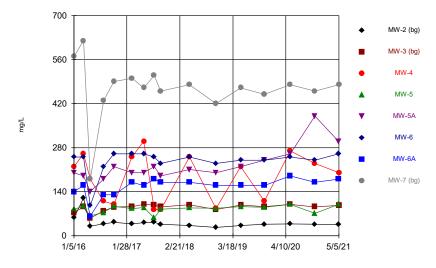
Trend Test

	The Empire District Client: Mi	Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM									
<u>Constituent</u>	Well	<u>Slope</u>	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP

Sanitas[™] Output – Sampling Event

Time Series Analysis

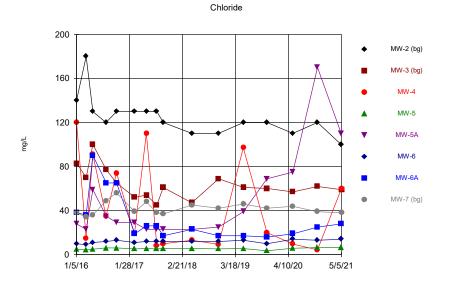
Sanitas[™] v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.



 Time Series
 Analysis Run 6/24/2021 3:14 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 5-21 App 3 Asbury ponds with background

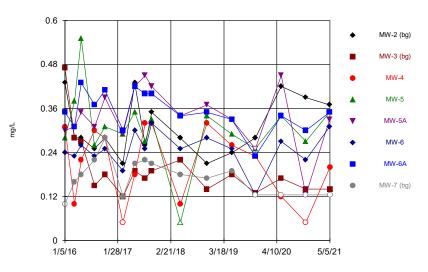
Sanitas™ v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

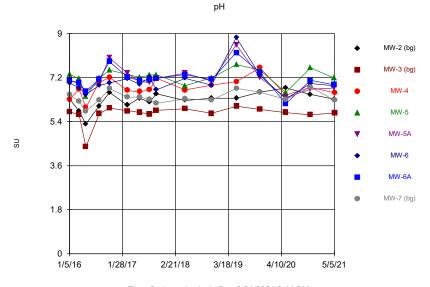

Calcium

 Time Series
 Analysis Run 6/24/2021 3:14 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 5-21 App 3 Asbury ponds with background

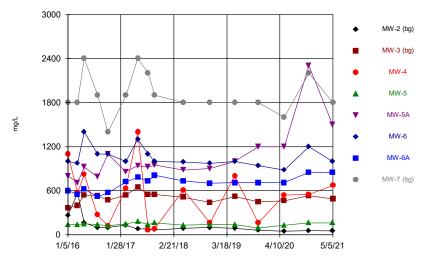
Sanitas[™] v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG




 Time Series
 Analysis Run 6/24/2021 3:14 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 5-21 App 3 Asbury ponds with background

Sanitas^w v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


Fluoride

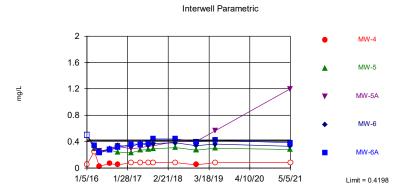
Sanitas™ v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

Sulfate

 Time Series
 Analysis Run 6/24/2021 3:14 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 5-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

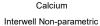

Total Dissolved Solids 4000 MW-2 (bg) ٠ MW-3 (bg) 3200 MW-4 MW-5 2400 MW-5A V mg/L MW-6 1600 MW-6A . MW-7 (bg) 800 0 1/5/16 1/28/17 2/21/18 5/5/21 3/18/19 4/10/20

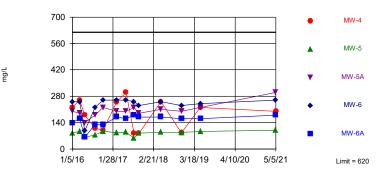
Sanitas[™] Output – Sampling Event

Prediction Limits

Sanitas^w v9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values. Exceeds Limit: MW-5A

Boron


Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.4903, Std. Dev=0.1363, n=39, 23.08% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9376, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

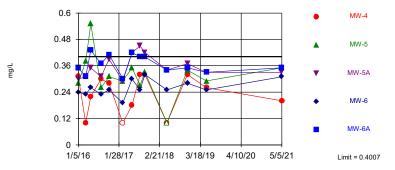

Prediction Limit Analysis Run 6/24/2021 3:32 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-21 App 3 Asbury ponds with background

Within Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

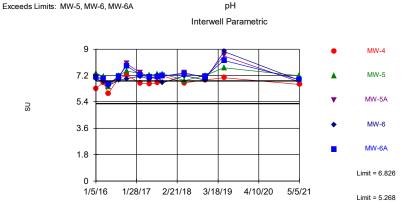
Prediction Limit Analysis Run 6/24/2021 3:32 PM


The Empire District Client: Midwest Environmental Consultants Data: 5-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

Chloride Within Limit Interwell Non-parametric 200 MW-4 160 MW-5 120 ng/L MW-5A 80 MW-6 40 MW-6A Λ 1/5/16 1/28/17 2/21/18 3/18/19 4/10/20 5/5/21 Limit = 180

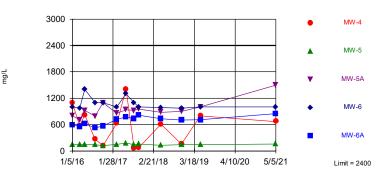
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.


Sanitas[™] v.9.5.29 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values. Within Limit Fluoride Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.4779, Std. Dev.=0.08183, n=39, 5.128% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9373, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Prediction Limit Analysis Run 6/24/2021 3:32 PM The Empire District Client: Midwest Environmental Consultants Data: 5-21 App 3 Asbury ponds with background

SanitasTM v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG



Background Data Summary (based on square transformation): Mean=37.17, Std. Dev.=4.969, n=39. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.919, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000752. Comparing 5 points to limit. Sanitas™ v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

Within Limit

Sulfate

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 6/24/2021 3:32 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-21 App 3 Asbury ponds with background

Prediction Limit Analysis Run 6/24/2021 3:32 PM

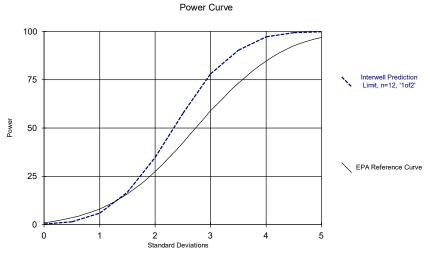
The Empire District Client: Midwest Environmental Consultants Data: 5-21 App 3 Asbury ponds with background

Sanitas™ v 9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

Total Dissolved Solids Within Limit Interwell Non-parametric 4000 MW-4 3200 MW-5 2400 ng/L MW-5A 1600 MW-6 800 MW-6A 0 1/5/16 1/28/17 2/21/18 3/18/19 4/10/20 5/5/21 Limit = 3100

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit


	The Empire District Client: Midwest Environmental Consultants			Consultants	Data: 5-21 Ap	PM					
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.4198	n/a	5/5/2021	0.08ND	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-5	0.4198	n/a	5/4/2021	0.28	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-5A	0.4198	n/a	5/4/2021	1.2	Yes	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-6	0.4198	n/a	5/4/2021	0.33	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-6A	0.4198	n/a	5/4/2021	0.38	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Calcium (mg/L)	MW-4	620	n/a	5/5/2021	200	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	5/4/2021	100	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	5/4/2021	300	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	5/4/2021	260	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	5/4/2021	180	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	5/5/2021	60	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	5/4/2021	6.6	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	5/4/2021	110	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	5/4/2021	14	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	5/4/2021	28	No	39	0	n/a	0.0012	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.4007	n/a	5/5/2021	0.2	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.4007	n/a	5/4/2021	0.35	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.4007	n/a	5/4/2021	0.33	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.4007	n/a	5/4/2021	0.31	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.4007	n/a	5/4/2021	0.35	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
pH (SU)	MW-4	6.826	5.268	5/5/2021	6.58	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5	6.826	5.268	5/4/2021	7.18	Yes	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5A	6.826	5.268	5/4/2021	6.77	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6	6.826	5.268	5/4/2021	6.87	Yes	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6A	6.826	5.268	5/4/2021	6.91	Yes	39	0	x^2	0.000752	Param Inter 1 of 2
Sulfate (mg/L)	MW-4	2400	n/a	5/5/2021	670	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	5/4/2021	160	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	5/4/2021	1500	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	5/4/2021	1000	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	5/4/2021	850	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	5/5/2021	1300	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	5/4/2021	580	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	5/4/2021	2400	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	5/4/2021	1700	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	5/4/2021	1400	No	39	0	n/a	0.0012	NP Inter (normality)

Sanitas[™] Output – Sampling Event

Power Curve

Sanitas[™] v.9.6.29 Sanitas software licensed to Midwest Environmental Consultants. UG

Kappa = 2.292, based on 5 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 6/24/2021 3:54 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-21 App 3 Asbury ponds with background

APPENDIX C

November 2021 Sampling Event

2021 Groundwater Monitoring, Sampling & Statistics Per EPA CCR Rule (CFR § 257.90-.98)

November Sampling Event

Asbury Generating Station CCR Impoundment Jasper County, MO

January 2022

Prepared For: The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION	3
2.1 History	3
2.2 Site Geology	3
2.3 Groundwater Monitoring Network Design	4
2.4 Groundwater Monitoring Network	4
2.5 Seasonal Variation	4
2.6 Groundwater Flow Direction	5
3.0 BASELINE GROUNDWATER DATA	6
3.1 Baseline Data Collection	6
3.2 Background Data Analysis	6
4.0 GROUNDWATER SAMPLING EVENT	7
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	8
5.1 Precision	8
5.2 Accuracy	8
5.3 Representativeness	8
5.4 Comparability	8
5.5 Completeness	9
6.0 Statistical ANALYSIS	10
6.1 Sampling Results	10
6.2 Statistical Analysis	10
6.3 Results Interpretation	13
6.4 Proposed Actions	16

LIST OF FIGURES

Figure 1 – Site Location Figure 2 – Monitoring Well Location Figure 3 – Potentiometric Map

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Generating Station CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule. In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed online October 17, 2017, as required by the EPA CCR rule. On November 2, 2017 the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via e-mail when this document was posted on-line, as required in the CCR rule. The EPA CCR Rule requires the annual groundwater report be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2020 sampling events will be posted on-line within 30 days of placement in the operating record.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017 to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Boron does not have an MCL. The facility conducted an alternative source demonstration per the EPA CCR Rule (§ 257.94). The water within the man-made dewatering trench and upgradient of the clay cutoff trench is impacting the quality of the water within MW-5A. MW-5AR will be installed downgradient of the cutoff trench system. The new well will be monitored to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

On November 8 and 9, 2021, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the November 2021 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is on **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Generating Station CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

All wells are registered with MDNR – Missouri Geological Survey Program.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

<u>Warner Sandstone</u>. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine grained sandstone and claystone. The upper part is largely medium-bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in

the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

<u>Riverton Shale</u>. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient.

The groundwater monitoring wells (MWs) at the Asbury Generating Station is equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown on **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is actually a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule under per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of May and October.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas[™] for Ground Water Version 9.2.13 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event. The analysis of the additional data for the background data sets was conducted and is included in **Appendix 5**. No trending was found in any of the additional sets of data so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On November 8 and 9, 2021 eight (8) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance to the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods							
Method Description							
9056A	Anions, Ion Chromatography						
6020A	Metals (ICP/MS)						
SM 2540C	Solids, Total Dissolved (TDS)						
Field Sampling	Field Sampling						

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (**Table 2**). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During November 2021 Sampling Event								
WELL	STATIC WA (ft-B		PURGE RATE	STABILIZED				
ID	Initial	Final	(mL/min)	рН				
MW-1*	6.44	NA	NA	NA				
MW-2	1.23	4.20	200	6.45				
MW-3	0.73	0.80	200	6.02				
MW-4	6.36	12.69	200	6.72				
MW-5	0.0	11.48	200	7.23				
MW-5A	9.01	18.41	200	6.84				
MW-6	8.61	18.73	200	7.09				
MW-6A	7.87	17.70	200	7.17				
MW-7	4.31	4.47	200	6.42				
* Water Level Only	NA – Not Applicab	lo NT – Not Tost	ed (inaccessible)					

* Water Level Only NA – Not Applicable NT – Not Tested (inaccessible)

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Test America). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision</u>. Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system as a whole. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks.</u> Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. The Test America laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents During November 2021 Sampling Event											
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.23	0.09	<0.08J	0.29	1.6	0.38	0.41	0.24		
Calcium	mg/L	NA	38	87	260	100	370	260	190	470		
Chloride	mg/L	NA	110	73	3.9	6.1	140	16	22	37		
Fluoride	mg/L	4.0	0.47	0.21	0.14	0.35	0.27	0.25	0.38	<0.25J		
рН	SU	NA	6.45	6.02	6.72	7.23	6.84	7.09	7.17	6.42		
Sulfate	mg/L	NA	<1	430	530	140	1700	1400	780	1700		
Total Dissolved Solids	mg/L	NA	390	830	1400	580	3100	1800	1500	2800		

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020 and submitted to the facility. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. In order to appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these analyses was not considered strong yet. The data set consisted of only 13 sampling events from

January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "*Insufficient data to test for seasonality: data were not deseasonalized.*" Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

	Table 4 – EPA Review of Groundwater Reports
Facility	Asbury Power Plant
Location	Asbury, MO
Owner	Empire District Electric Company
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis
Problematic Alternate Source Determination	
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

Sanitas[™] for Ground Water Version 9.6.25 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

Statistical analysis was performed on the Appendix III constituents from the sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have an exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL. The facility conducted an alternative source demonstration per the EPA CCR Rule (§ 257.94).

EPA CCR Rule 40 CFR § 257.94(e)(2) allows an alternative source demonstration that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. It is believed that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of the dewatering trench. The dewatering trench is filled with rock and an engineered cutoff trench of compacted clay material was constructed to prevent pond water from seeping through the berm. The water within the man-made dewatering trench and upgradient of the clay cutoff trench is impacting the quality of the water within MW-5A. MW-5AR will be installed downgradient of the cutoff trench system. The new well will be monitored to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Table 5 lists the parameters with exceedances of prediction limits during the sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Table 5 – Interwell Prediction Limit Exceedances Observed During November 2021 Sampling Event									
Constituent	Monitoring Well	Measured Concentration	Drinking Water MCLs						
Boron (mg/L)	MW-5A	Confirmed	0.9	1.6	NA				
pH* (SU)	MW-5	Confirmed	6.886	7.23	NA				
pH* (SU)	MW-6	Confirmed	6.886	7.09	NA				
pH* (SU)	MW-6A	Confirmed	6.886	7.17	NA				

NA = Not Applicable

*Field Sampled (less precise but within the required hold time)

6.3 Results Interpretation

There were no initial interwell prediction limit exceedances for the listed monitoring well during November 2021 sampling event. During the November 2021 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2022 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Below is a discussion of the previous results for comparison.

May 2021

There were no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. However, the initial prediction limit exceedance of total dissolved solids (MW-5A) was not

confirmed during the May 2020 sampling event. There are no current primary (health based) MCLs for pH but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2020

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94).

The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event. During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event.

During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH or sulfate.

During the May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resample confirmed the exceedances and the site planned to move into assessment monitoring.

However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event. During the November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances was confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that a there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event. During the May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

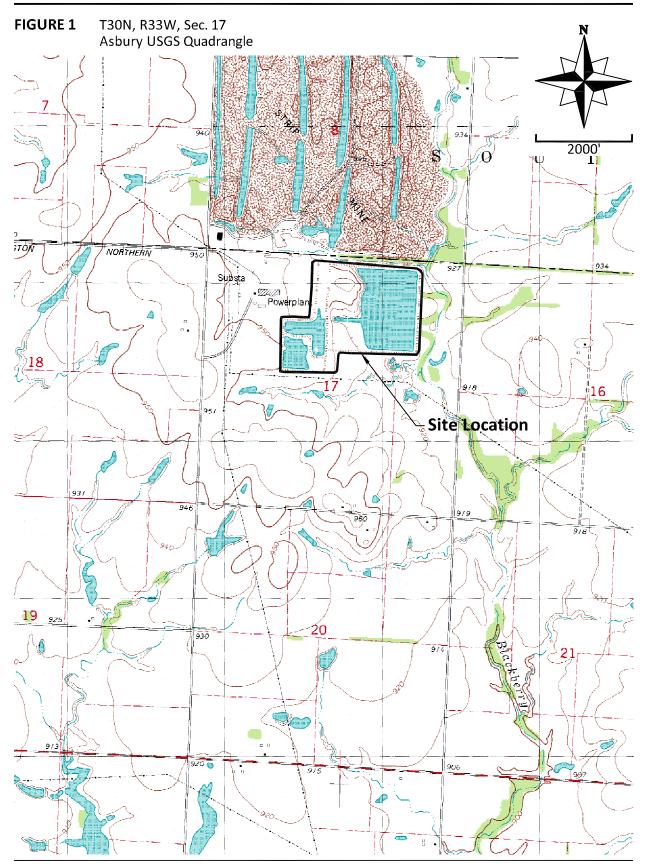
October 2017

The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids. Review of the Total Dissolved Solids in the duplicate sample taken from the same well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will re-evaluate MW-7 for Total Dissolved Solids during the next sampling event. MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient wells.

6.4 Proposed Actions

Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2021 Site Location Map

January 2022

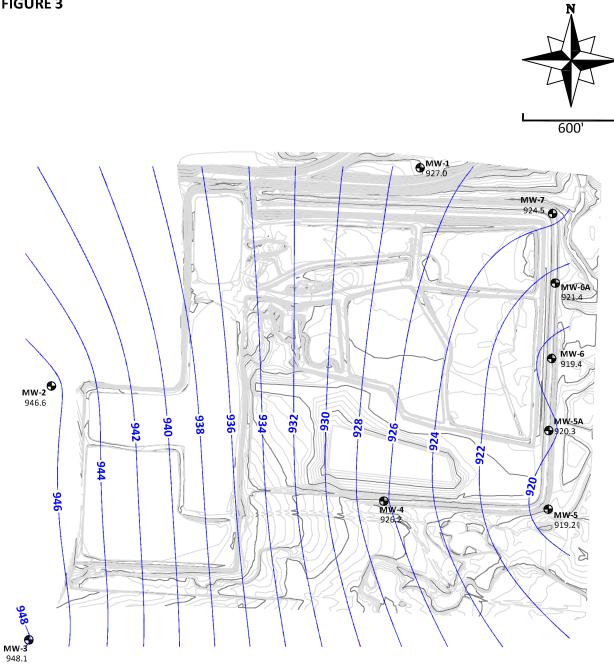
Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2021 Groundwater Monitoring System

FIGURE 2

мw-3

Well ID	Northing	Easting		
MW-1	435791.18 *	2765165.35		
MW-2	434428.46	2762861.37		
MW-3	432842.77	2762720.80		
MW-4	433709.99	2764938.99		
MW-5	433659.27	2765966.23		
MW-5A	434150.04	2765969.78		
MW-6	434600.46	2765987.98		
MW-6A	435071.44	2766010.46		
MW-7	435505.42	2765993.13		

* Coordinate location is approximate


Legend

Monitoring Well

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2021 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing Easting		Top Of Casing	Static Water Level (BTOC)	Static Water Level
MW-1	435791.18	2765165.35	933.4	6.4	927.0
MW-2	434428.46	2762861.37	947.8	1.2	946.6
MW-3	432842.77	2762720.80	948.8	0.7	948.1
MW-4	433709.99	2764938.99	932.6	6.4	926.2
MW-5	433659.27	2765966.23	919.2	0.0	919.2
MW-5A	434150.04	2765969.78	929.3	9.0	920.3
MW-6	434600.46	2765987.98	928.0	8.6	919.4
MW-6A	435071.44	2766010.46	929.3	7.9	921.4
MW-7	435505.42	2765993.13	928.8	4.3	924.5

•

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

NOV 0 2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at <u>www.oa.mo.gov/ahc</u>.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at <u>pam.hackler@dnr.mo.gov</u>. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

lies

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:	October	18,	2017
-------	---------	-----	------

TO: Pam Hackler- WPP- Industrial Wastewater Unit

FROM: Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program, MGS

Johen M. Bono

SUBJECT:

Site characterization for existing CCR impoundments Asbury Power Plant Site Characterization Work Plan- CCR 37 21 22.66 Latitude, -94 35 4.79 Longitude, Jasper County, Missouri

SWR18011 Jasper County

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring Boron Calcium Chloride Fluoride pH Sulfate Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 and 228 combined

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Calcium	mg/L	NA	57	74	220	84	200	250	140	570
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800
				Append	ix IV					
Antimony	mg/L	0.006	<0.002	<0.002 J						
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J

1st Baseline Event – January 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7	
	Appendix III										
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29	
Calcium	mg/L	NA	120	92	260	94	190	250	160	620	
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34	
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16	
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22	
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800	
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900	
			-	Append	lix IV			•			
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002	
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004	
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089	
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002	
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016	
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30	
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002	
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002	
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J	

2nd Baseline Event – March 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29
Calcium	mg/L	NA	130	100	91	5	59	11	90	36
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900
Appendix IV										
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J				
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J

3rd Baseline Event – May 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22
Calcium	mg/L	NA	38	79	110	74	180	220	130	430
Chloride	mg/L	NA	120	77	35	6	35	12	65	49
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J				
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900
Appendix IV										
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J				
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J

4th Baseline Event – August 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26
Calcium	mg/L	NA	43	91	100	94	220	260	130	490
Chloride	mg/L	NA	130	65	74	6	29	13	65	56
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800
Appendix IV										
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J

5th Baseline Event – October 2016 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26
Calcium	mg/L	NA	38	93	250	86	200	260	170	500
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000
			-	Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J							
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62

6th Baseline Event – March 2017 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

Constituent Units MCL MW-2 MW-3 MW-4 MW-5 MW-5A MW-6 MW-6A MW									MW-7	
				Append	dix III					
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26
Calcium	mg/L	NA	42	100	300	89	200	260	160	470
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J

7th Baseline Event – June 2017 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	< 0.001	<0.001J	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	< 0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

8th Baseline Event – August 2017 Sampling Event

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

MW-16.44											
				2021 Fi	ield Sam	pling Lo	g	1			
Facility:	Asbury	CCR (Pern	nit #)	M		/ell ID: <u>MI</u>		Tield D	- 	
-	formation: of Well Purge	e: Peristal	ltic Pump wit	h 3/8 - inch	Diameter T	Sample		Duplicate	Field Bl	апк [].	
					roa.	0]					
Date / Ti	me Initiated:	G	al Purge Volur	B:M			<u>it pump calik</u> pleted: <u>11 -</u>	P	۵		
Well Pur	Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y / N										
Purge Data: X Fast Recharge											
Time	Purge Rate (mL/min)	Cumula Volun (mL			Cond	ecific uctivity 5/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbid		
3:02	200	40	0 19	2 4.1	6 70	07	19.4	41.1	29	Y C	
:04		60	a 18,	9 1.5	5 70	13	16.5	35.9	4.5	51	
:06											
ioR		1000 18.3 6.46 703 13.9 33.2 23									
. 0 -		1001	100	6 6 7 1	5 70	2	1019	VVill	02621	q	
						ield Inspect	tion	godel	Fair		
Time sam	npled	725	3:10)	A	ccess ad Conditic asing Condi	n	GGG	<u>Fair</u> F F F	Poor P P P	
Weather	Conditions	10	Clerk	ewid	R	ocking Cap iser Conditi i <mark>eld Inspec</mark> t	on	G G Yes	F	Р Р N/A	
Water Le	vel Start	ي ال	23		W S1	/ell ID Visib tanding Wa	le ter	Y Y Y		N/A N/A	
Water Le	vel Finish	4-0	23		الا م	•		Ŏ		N/A N/A N/A N/A	
Name (M	EC Field Samp	oler): <u>Ryan</u>	Ortbals and F	Rick Elgin	Ec	quipment C	ation Normal alibration No ent Needed) N	N/A N/A N/A	
Sampler S	Signature	\mathcal{O}	Pt	3		-	ns from SAP ckness Chec	Y ked Y	N) N/A N/A	
	Data: Averag	e of same	1								
Constitue pH	uent		Units S.U.	MW-1 NO TEST	MW-2 5.83	MW-3	MW-4	MW-5	MW-5A	MW-6	
	Conductance		S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 6.72 umhos/cm GW 0.786 1.132 2.083 0.841 1.769 1.900								
	al Well Depth ft Level					1.200					
	Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92 7.86				7.86						
	GW Drop		ft								
	n Volumes rged Amount)		mL	DON'T SAMPLE	800	800	800	800	800	800	

	2021 Field Sampling Log											
Facility:	Asbury C	CR (Perm	it #)	Mc					. []		
-	ormation: of Well Purge	: Peristal	tic Pump with	3/8 - inch I	Diameter Tu	Sample Ubing	Blind D	Duplicate	Field Bla	nk [].		
Date / Tin	ne Initiated:	Actua 11 9	l Purge Volum -21 @	e Removed $\frac{1}{2}$	2200 0 Date /		<u>pump calib</u>		Ø			
	ed To Drynes	(as Detected			<u></u>			
Purge Dat	ta:											
Time	Purge Rate (mL/min)	Cumula Volum (mL	ie Temp		Condu	uctivity	Dissolved Oxygen	ORP	Turbidit			
12:45	200	100/) (°C)	(SU)	_	/cm) 15	(mg/L) 40.8	(MV) 36.3	24) Odor) Y		
47		1400	17.	1 6.10	1 1/2	22	34.7	35	143			
49	9 1800 17.0 608 1120 30.9 34									,		
:5/	51 2200 16,9 4.02 1119 JU.3 33											
				c u.cy		-(_0.0_					
Time samp	pled	1	2:55	- > (5	A(eld Inspecti ccess ad Condition asing Condit	n	Good G G G	Fair F	Poor P P P		
Weather C	(101	cy 60) -	Lo Ri	ocking Cap 8 ser Conditio	& Lock on	G G	R	P P		
Water Lev	el Start	<u>)02</u>	3'		W St Cl	eld Inspecti /ell ID Visible anding Wat ear of Weed	e ter ds	Yes Y		N/A N/A N/A N/A		
Water Lev	el Finish	1.5	0		Sp	easuring Po blit sample v aintenance	with MDNR	Ŷ	R	N/A N/A N/A		
Name (ME	C Field Samp	ler): <u>Ryan</u>	Ortbals and R	ick Elgin 7	De Eq Re	econtaminat Juipment Ca edevelopme	tion Normal alibration No ent Needed			N/A N/A N/A		
Sampler Si	Sampler Signature Any deviations from SAP Y N/A Sediment Thickness Checked Y N/A											
Historical I	Data: Averag	e of samp	ing events									
Constitu	ent		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6		
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72		
	Conductance		umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900		
Total We			ft	Level								
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86		
Average	GW Drop		ft									

DON'T

SAMPLE

mL

800

800

800

800

800

800

2 System Volumes

(Min Purged Amount)

2021 Field	Sampling	Log
------------	----------	-----

	2021 Field Sampling Log											
Facility:	Asbury	CCR (Permit #)	Monitoring Sample	Well ID! MV	V-	Field Blank				
	formation: of Well Purge	e: Peristaltic Pu	mp with 3/	8 - inch Dia					Li*			
		Actual Purg	ge Volume R	emoved:	400 mL pc	ost pump calib	ration .					
Date / Ti	me Initiated:	11 8 -2	1 @	.07	Date / Time Cor	mpleted: <u>11 -</u>	· J -21 @					
Well Pur	ged To Dryne	ss?: Y / N		Petrole	eum or Gas Detect	ed?Y/N						
Purge Da	ita:											
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp. (°C)	pH (SU)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)			
3:39	200	800	125	6.67	1740	20.0	1216	44671	· Clevel			
:41		1000	18.3	11.9	1203	16.9	74	38.14	100			
:43		1200	18.2	171	IDNJ	15.7	14	37.72				
:45	11	1400	18.1	6.22	1804	ADD	-1.6	4Lill				
				* • • •	1-0-	14.3		<i>1</i>				
		~	NIC		Field Inspe	ction	Good		2 <u>00r</u>			
Time sam	nled	\sim	.47		Access Pad Condit	ion	G	F	P P			
e oun		-705		01	Casing Con			F	P			
		In ut.	ida 1	65	ے۔ Locking Ca		G	F	Р			
Weather	Conditions	10 01	and the	- na	Riser Condi		G	F	P			
		131	1 1	03	Field Inspe		Yes	No	<u>N/A</u>			
Water Le	vel Start	6.06			Well ID Visi Standing W		Y V		N/A N/A			
		. 0 1	1		Clear of We		à	N	N/A			
		1) 66	7		Measuring		Ð	N	N/A			
Water Lev	vel Finish	12.01			12 · · · ·	e with MDNR	Ŷ		N/A			
					Maintenan	Ø	N/A					
Name (M	EC Field Same	oler): <u>Ryan Ortb</u>	Joond Dick	Flain	Decontamination Normal (Y N N/ Equipment Calibration Normal (Y N N/							
ivanie (IVI	LC FIEID Sam	Sier J. <u>Nyam Orto</u>		cigin				N N co	N/A N/A			
Redevelopment Needed (Y) Any deviations from SAP Y (No)												
Sampler S	ignature(20			hickness Chec	ked Y	N	N/A N/A			

Historical Data: Average of sampling events

S.U. mhos/cm ft	NO TEST GW Level	5.83 0.786	5.08 1.132	6.30 2.083	6.83 0.841	6.82 1.769	6.72 1.900
		0.786	1.132	2.083	0.841	1.769	1.900
ft	Level						
ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
ft							
	DON'T		800	800	800	800	800
mL	SAMPLE	800					
		ft DON'T	ft DON'T 800	ft DON'T 800 800	ft DON'T 800 800	ft DON'T 800 800 800 800	ft DON'T 800 800 800 800 800

2021 Field Sampling Log

			_				Ð	4				
Facility:	Asbury	CCR (Permit #)	Мо	nitoring W	ell ID: MV	V	<i>f</i>	-V		
Purge inf	formation:					Sample	Blind [Field Blan	k [].		
-		e: Peristaltic Pu	mp with 3,	/8 - inch Dia	meter Tu	ibing	-	9:00	9	15		
		Actual Purg	e Volume I	Removed:	200	mL post	t pump calib	ration .		/		
										1		
Date / Tii	me Initiated:	<u>11 9 -2</u>	1 @ 0	- Ag	Date /	Time Comp	oleted: <u>11 -</u>	9 -21 @	D			
Well Purg	Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y / N											
Purge Da	ita:											
										Other		
	Purge Rate	Cumulative				cific	Dissolved			(Color,		
Time	(mL/min)	Volume	Temp.	pH (cu)	1	ctivity	Oxygen	ORP	Turbidity			
		(mL)	(°C)	(SU)	1 00	/cm)	(mg/L) つう/	(MV)	()	Odor)		
8:33	200	300	10.4		88	6	20.1	1315	5.56	, (
:35		1200	16.7	7.30	84	4	19.5		602			
:37		1600	16-7		88		17-9	-,75.6	11.2			
:39		2000	16.8	7,23	SP	6	16.2	-46.2	20.41	0		
		Ø,	Un			eld Inspect	ion	Good	Fair	Poor		
Time sam	pled	8:	10			cess d Conditio	n	G	F	Р Р		
		NI I.	105	-15	Ca	ising Condi	tion	G	F	P		
Weather	Conditions	Cloudy	VPV)0 -		cking Cap 8 ser Conditio		G	F	P P		
		9	1			eld Inspect		Wes	Nes	Р <u>N/A</u>		
	1.0.	0.0	1			ell ID Visibl		Y	(\mathbb{N})	N/A		
Water Lev	vel Start					anding Wat		Č)	N/A		
		11.42) '			ear of Wee easuring Po		Ø	N	N/A N/A		
Water Lev	vel Finish	111/2				-	with MDNR	Y	Â	N/A		
							Performed	Y		N/A		
Name (Mi	EC Field Same	oler): <u>Ryan Ortba</u>	ic and Rick	Clain			tion Normal		N	N/A		
rune han	cerreia samp				•	•	alibration No ent Needed		N	N/A N/A		
		17	Ko			•	ns from SAP	Y	N) N/A		
Sampler S	ignature \neg	A	V)	See	diment Thie	ckness Chec	ked Y		N/A		
Historical	Data: Averag	e of simpling ev	vents									
Constitu	uent		Inits	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6		

Constituent	Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН	S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
Specific Conductance	umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
Total Well Depth	ft	Level						
Average GW Depth	ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
Average GW Drop	ft							
2 System Volumes (Min Purged Amount)	mL	DON'T SAMPLE	800	800	800	800	800	800
						P		
						$\langle \Lambda \rangle$		

	2021 Field Sampling Log											
Facility:	Asbury C	CCR (Perm	it #)		Monitoring	Wall ID: <u>MV</u> Blind I	v-5A		- L []		
+	formation : of Well Purge	: Peristali	tic Pump wi	h 3/8 - inc	n Diamet	-		Duplicate		nk [].		
		Actua	l Purge Volu	me Remove	ed: <u>[6</u>	OO mL po	ost pump calib	oration .				
Data / T	me Initiated:	9	21 0	925	5	ate / Time Cor		d				
Date / II	me initiated:	11 /	-21 (a)	101	Da	ate / Time Cor	npleted: <u>11 -</u>	-/ -21 @	2			
Well Pur	ged To Drynes	ss?: Y/	N	Pe	troleum	or Gas Detect	ed? Y/N					
Purge Da	ata:											
Time	Purge Rate (mL/min)	Cumulat Volum (mL				Specific onductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidi	Other (Color, ty Clarity,) Odor)		
1 27						\$707			273	/		
1	200	400	1 44	4		1101	31.0	59.0	233			
29		800	P/q	2 7,6)7 C	58 /R	Q17	437	16,00	6		
31		1200		3 6.9	ry :	38.99	17.8	32.9	101.7	4		
33					411		1	1	Pob	1		
لر 🌣	33 1600 16.2 0.84 3861 16.2 RGit								OFIL	L		
Time san	/	q: Nala	~35 VID	5/15		Field Inspe Access Pad Condit Casing Con Locking Ca	ion dition p & Lock	Geood G G G G G	<u>Fair</u> F F F	Poor P P P P		
Weather Water Le	Condition	9.0				Riser Cond Field Inspe Well ID Vis Standing W Clear of We Measuring	<u>ction</u> ible /ater eeds	¢ ¢	F <u>No</u> N N	P <u>N/A</u> N/A N/A N/A		
Water Le	vel Finish	4.11				Split sampl Maintenan	e with MDNR ce Performed nation Norma			N/A N/A		
Name (M	IEC Field Samp	oler): <u>Ryan</u>	Ortbalsand	Rick Elgin		Equipment Redevelop	Calibration N ment Needed	ormal	NN	N/A N/A N/A		
Sampler S	Sampler Signature N N/A Sediment Thickness Checked Y N N/A											
	Data: Averag	e of sampl				1						
Constit	uent		Units	MW- 1	_			MW-5	MW-5A	MW-6		
pH	Canalant		S.U.	NO TES	_		6.30	6.83	6.82	6.72		
	Conductance		umhos/cm		0.7	86 1.132	2.083	0.841	1.769	1.900		
	/ell Depth e GW Depth		ft ft	Level Only	1.2	4 0.4	E 20	1 2 2	6.02	7.86		
	e GW Depth		ft	Uniy	1.2		5.39	1.32	6.92	7.00		

DON'T

SAMPLE

mL

800

800

800

2 System Volumes

(Min Purged Amount)

 \rangle

800

800

800

2021 Field Sampling Log

								/				
Facility:	Asbury (CCR (Perm	it #)	Mo	nitoring W	ell p. MV	v- Q				
						Sample	K	Duplicate	Field Bla	nk .		
Purge In	of formation:					. /	4	• _				
Method	l of Well Purge	: Peristal	tic Pump with	3/8 - inch D	Jiameter Tu	ibing						
					211							
		Actua	l Purge Volum	e Removed:	2600	mL post	t pump calib	ration .				
/ .		q	-21 @	iA:NI	•			d				
Date / T	ime Initiated:	11 /	-21 @	0.01	Date /	Time Comp	oleted: <u>11</u> -	- / -21 (0			
Moll Du	rged To Dryne	» / ۷ ، ۱۰۰	NI	Data				C				
well Ful	iged to Dryne	55f. T/	EN .	Petr	oleum or G	as Detected	ar Y/N					
Purge D	ata:											
	1	,				T		1	T			
	Durgo									Other		
	Purge Rate	Cumulat				cific	Dissolved			(Color,		
		Volum				ctivity	Oxygen	ORP	Turbidi			
Time	(mL/min)	(mL) (°C)	(SU)	(mS	/cm)	(mg/L)	(MV)	() Odor)		
1014	200	1400) 17.2	3 7,21	20:	35	17.4	29.7	37.4	6 C		
:16		1800) 17.	9 7.18	200	29	19.5	24.6	111.	75 C		
.18		2200	17:	3 7,10	202	0	14.4	24.9	181	IN		
:20		2600		7.09	2/11	5	1460	27.1	2057	7/		
	1		1100	1.00			/ ///	-07	10000	7	-	
	IO . 1 O Field Inspection Good Fair Poor											
T :		11	$)$ (αU)			cess		G	F	P		
Time sar	mpied					d Conditio		G	F	P		
	/	Alul	1 10	. 1		sing Condi		G	F	Р		
Mastha	r Conditions (1000	V DO I	UnM	24	cking Cap &		G	F	P		
vveatilei	Conditions			N		ser Conditi		G	F	P		
		\mathcal{O}	111			el <mark>d Inspect</mark> ell ID Visibl		Yes	No			
Water Le	evel Start	O u	61			anding Wat		v) N/A N/A		
Water E		.0.				ear of Wee		5		N/A		
		18.1				easuring Po		$\langle \mathcal{C} \rangle$	N.	n N/A		
Water Le	evel Finish	10-1				-	with MDNR	Ý	N	N/A		
	<i>1</i>					-	Performed	Y C		N/A		
							tion Normal		N N	N/A		
Name (N	/IEC Field Sam	pler): Ryan	Orthals and R	ck Elgin			alibration No		N	N/A		
			1/1/	æ		•	ent Needed	Ty)	At	N/A		
		111	4 per	5			ns from SAP	Ŷ	N	N/A		
Sampler	Signature 🖊	10	//	/	Se	diment Thi	ckness Chec	ked Y	(N) N/A		
Historica	listorical Data: Average of sampling events											
Consti		se of semp	Units	MW- 1	MW-2	MW-3	MW-4	NAVA E	MW-5A	NAVAL C		
pH			S.U.	NO TEST	5.83	5.08	6.30	MW-5 6.83		MW-6		
	c Conductance	3	umhos/cm	GW	0.786	1.132	2.083		6.82 1.769	6.72		
	Vell Depth	·	ft	Level	0.780	1.152	2.083	0.841	T'10A	1.900		
					1 2/	0.4	E 20	1 2 2	6.02	7.96		
	Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92 7.86 Average GW Drop ft <t< td=""></t<>											

800

800

DON'T

SAMPLE

mL

800

800

800

800

2 System Volumes

(Min Purged Amount)

2021 Field Sampling Log

					and odding		6		(
Facility:	Facility: Asbury CCR (Permit # Monitoring Well(ID: MW- Sample Blind Duplicate Field Blank										
-	formation:						E-t				
Method	Method of Well Purge: Peristaltic Pump with 3/8 - inch Diameter Tubing										
		Actua	Purge Volum	e Removed:	2200	mL pos	st pump calib	oration.			
			a	11.5	1			~			
Date / Ti	Date / Time Initiated: 11 - 7 -21 @ 10:56 Date / Time Completed: 11 - 7 -21 @										
Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y / N											
Purge Data:											
Time	Purge Rate (mL/min)	Cumulat Volum (ml	e Temp	. pH (SU)	Condu	ecific activity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)	
11:01	200	1000) /6.7	7.30	0 180	24	20.0	50.4	14.17	C	
0:03		46.9	16.37								
105 1800 16.6 7.22 1802 16.0 48.1 17.34										(·	
:07		2200		(''	1 181	11	15.0	31.5	16.62		
- (0000	1012	6.6	100	<u>'</u>	(),0	045	14.02		
Time sampled						Field Inspection Good Fair Poor Access G F P Pad Condition G F P Casing Condition G F P Locking Cap & Lock G F P Miser Condition G F P Locking Cap & Lock G F P Miser Condition G F P Vell ID Visible Y N N					
Water Le Water Le	vel Finish	17.7	0'		Cl M Sp M	aintenanc	eds Point with MDNR e Performed			N/A N/A N/A N/A	
Name (M	IEC Field Sam	pler): <u>Rvan</u>	Outparts and R	ick Elgin	Ec Re	quipment (edevelopm	ation Norma Calibration N nent Needed ons from SAP	00	N	N/A N/A N/A N/A	
Sampler :	Signature —(Æ	Je	7		-	ickness Chec	ked Y	N	N/A	
Historica	Data: Averag	ge of samp	ing events								
Constit	uent	(Units	MW-6A	MW-7						
рН			S.U.	6.87	6.12		_				
	Conductance	9	umhos/cm	1.601	2.699						
	/ell Depth		ft								
Average	e GW Depth		ft	7.28	3.04						

800

ft

mL

Average GW Drop

2 System Volumes

(Min Purged Amount)

800

					2021 Fie	ld Sam	pling Lo	og	2			
	Facility: Asbury CCR (Permit #) Monitoring Well ID: MW-].	
	Purge information: Method of Well Purge: Peristaltic Pump with 3/8 - inch Diameter Tubing											
	Actual Purge Volume Removed: <u>RODU mL post pump calibration.</u>											
	Date / Time Initiated: <u>11- 1 -21 @ [[:38</u> Date / Time Completed: <u>11- 1 -21- @</u>											
	Well Purged To Dryness?: Y / N Petroleum or Gas Detected? Y / N											
3	Purge Da	ta:										
	Time	Purge Rate (mL/min)	Cumulat Volum (ml	e Temp) (°C)	(SU)	Condu	ecific uctivity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)	
	11:42	200	800	17.0	6.71	28	33	24.0	10.9	20,40	C	
	0:44		1200	17.0		A 1	36	18,6	18.8	17,47		
	.'46		1600	17.0		0 0	36	14.8	18.5	7/17		
N	:418		2000				175	14.0	170	7117		
ž	· (%)		000	17.0	6.40	X 4	235	16.0	1117	alill		
6	11:50					Field InspectionGoodFairPoorAccessGFPPad ConditionGFP						
/-/	Time sampled Weather Conditions Close 400°					Casing Condition G F P Locking Cap & Lock G F P Riser Condition G F P						
-Mr			11	8,1			<mark>eld Inspe</mark> /ell ID Visi		Yes Y	Ne	<u>N/A</u>	
2	Water Le	vel Start	710	51				N/A N/A				
C			11 .	171		Clear of Weeds N N						
	Water Le	vol Finich	4,4	t		Measuring Point N/A Split sample with MDNR Y N/A						
	avatel re						-	ce Performed	14		N/A	
								nation Norma		Ν	N/A	
	Name (M	EC Field Sam	pler): <u>Ryan</u>	Ortbals and R	Rick Elgin			Calibration No nent Needed	ormal	N	N/A N/A	
			A	Ha	1		•	ons from SAP	Y	N)	N/A	
	Sampler S	Signature —	A	$ \rightarrow $	T	Se	diment Tl	hickness Chec	ked Y	N	N/A	
	Historical	Data: Avera	e of samo	ing events								
	Constit			Units	MW-6A	MW-7						
	рН			S.U.	6.87	6.12						
		Conductance	е	umhos/cm	1.601	2.699						
		ell Depth		ft								
	Average	e GW Depth		ft	7.28	3.04						

X

800

ft

mL

800

Average GW Drop

2 System Volumes

(Min Purged Amount)

APPENDIX 4

Analytical Results from Lab

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-129771-1 Client Project/Site: Asbury Pond - EPA

For: Midwest Environmental Consultants 2009 East McCarty Street

2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Attn: Anika Careaga

Authorized for release by: 11/18/2021 3:57:57 PM

Andy Johnson, Manager of Project Management (615)301-5045 Andy.Johnson@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

1

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	12
QC Sample Results	22
QC Association Summary	24
Chain of Custody	26
Receipt Checklists	28

Job ID: 180-129771-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-129771-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 11/10/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.6° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3
4
5
8
9

HPLC/IC		
Qualifier	Qualifier Description	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	U III
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	2
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Accreditation/Certification Summary

PA 02-00416

004375

E-10350

162013

04041

KY98043

PA00164

PA00164

2030

PA005

11182

R-227

89014

PA-2151

02-00416

LAO00362

T104704528

P330-16-00211

PA001462019-8

P-Soil-01

10043

998027800

142

434

042-999-482

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA

Georgia

Illinois

Kansas

Louisiana

Minnesota

Nevada

Maine

Kentucky (UST)

Kentucky (WW)

New Hampshire

North Carolina (WW/SW)

New Jersey

North Dakota

Pennsylvania

Rhode Island

South Carolina

West Virginia DEP

New York

Oregon

Texas

USDA

USDA

Utah

Virginia

Wisconsin

Laboratory: Eurofins TestAmerica, Pittsburgh

Job ID: 180-129771-1

Expiration Date 06-27-21

04-30-22

06-30-22

01-31-22 04-30-22

12-31-21

06-30-22

03-06-22

12-31-21

08-31-22

04-05-22

06-30-22

04-01-22

12-31-21

04-30-22

02-06-22

04-30-22

12-31-21

04-30-22

03-31-22

06-26-22

06-26-22

05-31-22

09-15-22

01-31-22

08-31-22

5

Authority	Program	Identification Number	Expiration
Arkansas DEQ	State	19-033-0	06-27-21 *
California	State	2891	04-30-22
Connecticut	State	PH-0688	09-30-22
Florida	NELAP	E871008	06-30-22

State

NELAP

NELAP

State

State

State

State

NELAP

NELAP

NELAP

NELAP

NELAP

State

State

NELAP

NELAP

State

State

NELAP

Federal

NELAP

NELAP

State

State

US Federal Programs

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA

lob	١D·	180-129771-1
500	ıD.	100-120111-1

Ļ

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-129771-1	MW-2	Water	11/08/21 15:10	11/10/21 10:00
180-129771-2	MW-3	Water	11/09/21 12:55	11/10/21 10:00
180-129771-3	MW-4	Water	11/08/21 15:45	11/10/21 10:00
180-129771-4	MW-5	Water	11/09/21 08:40	11/10/21 10:00
180-129771-5	MW-5A	Water	11/09/21 09:35	11/10/21 10:00
180-129771-6	MW-6	Water	11/09/21 10:20	11/10/21 10:00
180-129771-7	MW-6A	Water	11/09/21 11:10	11/10/21 10:00
180-129771-8	MW-7	Water	11/09/21 11:50	11/10/21 10:00
180-129771-9	Duplicate	Water	11/09/21 09:00	11/10/21 10:00
180-129771-10	Field Blank	Water	11/09/21 09:15	11/10/21 10:00

Method Summary

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020A	Metals (ICP/MS)	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
-ield Sampling	Field Sampling	EPA	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Client Sample ID: MW-2 Date Collected: 11/08/21 15:10 Date Received: 11/10/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			378879	11/14/21 15:36	JRB	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	378954	11/16/21 10:30	KFS	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A tt ID: A		1			379323	11/17/21 19:45	RSK	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	378658	11/11/21 17:13	KMM	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			378618	11/08/21 16:10	KAR	TAL PIT

Client Sample ID: MW-3 Date Collected: 11/09/21 12:55 Date Received: 11/10/21 10:00

Batch Dil Batch Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA 9056A 1 1 mL 1.0 mL 378879 11/14/21 16:46 JRB TAL PIT Instrument ID: CHICS2100B Total/NA Analysis EPA 9056A 10 378879 11/14/21 17:02 JRB TAL PIT Instrument ID: CHICS2100B Total Recoverable 3005A 50 mL 11/16/21 10:30 KFS TAL PIT Prep 50 mL 378954 Total Recoverable EPA 6020A 379323 11/17/21 19:48 RSK TAL PIT Analysis 1 Instrument ID: A SM 2540C 11/11/21 17:13 KMM Total/NA Analysis 1 100 mL 100 mL 378658 TAL PIT Instrument ID: NOEQUIP Total/NA Analysis 378618 Field Sampling 1 11/09/21 13:55 KAR TAL PIT Instrument ID: NOEQUIP

Client Sample ID: MW-4 Date Collected: 11/08/21 15:45 Date Received: 11/10/21 10:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA EPA 9056A 378879 11/14/21 17:19 JRB TAL PIT Analysis 1 Instrument ID: CHICS2100B Total/NA Analysis EPA 9056A 10 378879 11/14/21 17:35 JRB TAL PIT Instrument ID: CHICS2100B Total Recoverable Prep 3005A 50 ml 11/16/21 10:30 KFS TAL PIT 50 ml 378954 **Total Recoverable** Analysis EPA 6020A 1 379323 11/17/21 19:52 RSK TAL PIT Instrument ID: A Total/NA Analysis SM 2540C 1 100 mL 100 mL 378658 11/11/21 17:13 KMM TAL PIT Instrument ID: NOEQUIP Total/NA Analvsis Field Sampling TAL PIT 378618 11/08/21 16:45 KAR 1 Instrument ID: NOEQUIP

Lab Sample ID: 180-129771-1 Matrix: Water

Lab Sample ID: 180-129771-2

Lab Sample ID: 180-129771-3

water. water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 180-129771-4

Client Sample ID: MW-5 Date Collected: 11/09/21 08:40 Date Received: 11/10/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A It ID: CHICS2100B		1			378879	11/14/21 18:30	JRB	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	378954	11/16/21 10:30	KFS	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020A It ID: A		1			379323	11/17/21 20:03	RSK	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	378658	11/11/21 17:13	KMM	TAL PIT
Total/NA	Analysis Instrumer	Field Sampling t ID: NOEQUIP		1			378618	11/09/21 09:40	KAR	TAL PIT

Client Sample ID: MW-5A Date Collected: 11/09/21 09:35 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-5

Lab Sample ID: 180-129771-6

Matrix: Water

Matrix: Water

	9

5

8

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method EPA 9056A at ID: CHICS2100B	Run	Dil Factor 2.5	Initial Amount	Final Amount	Batch Number 378879	Prepared or Analyzed 11/14/21 19:08	Analyst JRB	Lab TAL PIT
Total/NA	Analysis Instrumer	EPA 9056A at ID: CHICS2100B		25			378879	11/14/21 19:26	JRB	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumer	3005A EPA 6020A at ID: A		1	50 mL	50 mL	378954 379323	11/16/21 10:30 11/17/21 20:07		TAL PIT TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	50 mL	100 mL	378658	11/11/21 17:13	KMM	TAL PIT
Total/NA	Analysis Instrumer	Field Sampling at ID: NOEQUIP		1			378618	11/09/21 10:35	KAR	TAL PIT

Client Sample ID: MW-6 Date Collected: 11/09/21 10:20 Date Received: 11/10/21 10:00

Prep Type Total/NA	Batch Type Analysis	Batch Method EPA 9056A	Run	Dil Factor 2.5	Initial Amount	Final Amount	Batch Number 378879	Prepared or Analyzed 11/14/21 19:45	Analyst JRB	Lab TAL PIT
	Instrumen	t ID: CHICS2100B								
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		25			378879	11/14/21 20:04	JRB	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	378954	11/16/21 10:30	KFS	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A tt ID: A		1			379323	11/17/21 20:10	RSK	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	378658	11/11/21 17:13	KMM	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			378618	11/09/21 11:20	KAR	TAL PIT

Matrix: Water

5

8

Lab Sample ID: 180-129771-7

Client Sample ID: MW-6A Date Collected: 11/09/21 11:10 Date Received: 11/10/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A t ID: CHICS2100B		1			378879	11/14/21 20:22	JRB	TAL PIT
Total/NA	Analysis Instrument	EPA 9056A t ID: CHICS2100B		10			378879	11/14/21 20:41	JRB	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	378954	11/16/21 10:30	KFS	TAL PIT
Total Recoverable	Analysis Instrument	EPA 6020A t ID: A		1			379323	11/17/21 20:14	RSK	TAL PIT
Total/NA	Analysis Instrument	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	378658	11/11/21 17:13	КММ	TAL PIT
Total/NA	Analysis Instrument	Field Sampling t ID: NOEQUIP		1			378618	11/09/21 12:10	KAR	TAL PIT

Client Sample ID: MW-7 Date Collected: 11/09/21 11:50 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-8

Matrix: Water

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A nt ID: CHICS2100B		2.5			378879	11/14/21 21:00	JRB	TAL PIT
Total/NA	Analysis Instrumer	EPA 9056A ht ID: CHICS2100B		25			378879	11/14/21 21:18	JRB	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	378954	11/16/21 10:30	KFS	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020A nt ID: A		1			379323	11/17/21 20:17	RSK	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C nt ID: NOEQUIP		1	50 mL	100 mL	378658	11/11/21 17:13	KMM	TAL PIT
Total/NA	Analysis Instrumer	Field Sampling t ID: NOEQUIP		1			378618	11/09/21 12:50	KAR	TAL PIT

Client Sample ID: Duplicate Date Collected: 11/09/21 09:00 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-9

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A ID: CHICS2100B		1			378879	11/14/21 22:14		TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrument	3005A EPA 6020A ID: A		1	50 mL	50 mL	378954 379323	11/16/21 10:30 11/17/21 20:21		TAL PIT TAL PIT
Total/NA	Analysis Instrument	SM 2540C ID: NOEQUIP		1	100 mL	100 mL	378658	11/11/21 17:13	КММ	TAL PIT
Total/NA	Analysis Instrument	Field Sampling ID: NOEQUIP		1			378618	11/09/21 10:00	KAR	TAL PIT

Client Sample ID: Field Blank Date Collected: 11/09/21 09:15 Date Received: 11/10/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			378879	11/14/21 22:52	JRB	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	378954	11/16/21 10:30	KFS	TAL PIT
Total Recoverable	Analysis	EPA 6020A		1			379323	11/17/21 20:25	RSK	TAL PIT
	Instrumer	it ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	378658	11/11/21 17:13	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep KFS = Kelly Shannon Batch Type: Analysis JRB = James Burzio KAR = Kacy Reitnauer KMM = Kendric Moore RSK = Robert Kurtz

Lab Sample ID: 180-129771-10 Matrix: Water

Job ID: 180-129771-1

Client Sample ID: MW-2 Date Collected: 11/08/21 15:10 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-1 Matrix: Water

Method: EPA 9056A - Anion	s, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		1.0	0.71	mg/L			11/14/21 15:36	1
Fluoride	0.47		0.10	0.026	mg/L			11/14/21 15:36	1
Sulfate	ND		1.0	0.76	mg/L			11/14/21 15:36	1
☐ Method: EPA 6020A - Metals	(ICP/MS) - To	otal Recove	rable						
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.23		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 19:45	1
Calcium	38		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 19:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	390		10	10	mg/L			11/11/21 17:13	1
Method: Field Sampling - Fi	eld Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
рН	6.45				SU			11/08/21 16:10	1

9

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA Job ID: 180-129771-1

Matrix: Water

Lab Sample ID: 180-129771-2

Client Sample ID: MW-3 Date Collected: 11/09/21 12:55 Date Received: 11/10/21 10:00

Method: EPA 9056A - Anion Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Chloride		Quaimer	1.0		mg/L			11/14/21 16:46	
	0.21		0.10	0.026	0			11/14/21 16:46	1
Fluoride Sulfate	430		10		mg/L			11/14/21 10:40	10
Method: EPA 6020A - Metals	s (ICP/MS) - To	otal Recove	rable						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.090		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 19:48	1
Calcium	87		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 19:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	830		10	10	mg/L			11/11/21 17:13	1
Method: Field Sampling - Fi	eld Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.02				SU			11/09/21 13:55	1

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA Job ID: 180-129771-1

Matrix: Water

Lab Sample ID: 180-129771-3

Client Sample ID: MW-4 Date Collected: 11/08/21 15:45 Date Received: 11/10/21 10:00

Method: EPA 9056A - Anion									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.9		1.0	0.71	mg/L			11/14/21 17:19	1
Fluoride	0.14		0.10	0.026	mg/L			11/14/21 17:19	1
Sulfate	530		10	7.6	mg/L			11/14/21 17:35	10
Method: EPA 6020A - Metals	s (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.063	J	0.080	0.039	mg/L		11/16/21 10:30	11/17/21 19:52	1
Calcium	260		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 19:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1400		10	10	mg/L			11/11/21 17:13	1
Method: Field Sampling - Fi	eld Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.72				SU			11/08/21 16:45	1

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA Job ID: 180-129771-1

Client Sample ID: MW-5 Date Collected: 11/09/21 08:40 Date Received: 11/10/21 10:00

			La	b Sample	ID: 180-12 Matrix	9771-4 k: Water	
atography Qualifier	RI	MDI Unit	р	Prepared	Analyzed	Dil Fac	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.1		1.0	0.71	mg/L			11/14/21 18:30	1
luoride	0.35		0.10	0.026	mg/L			11/14/21 18:30	1
Sulfate	140		1.0	0.76	mg/L			11/14/21 18:30	1
Method: EPA 6020A - Metals	s (ICP/MS) - Te	otal Recover	rable						
Analyte	· · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.29		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:03	1
Calcium	100		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	580		10	10	mg/L			11/11/21 17:13	1
Method: Field Sampling - Fi	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.23				SU			11/09/21 09:40	1

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA Job ID: 180-129771-1

Client Sample ID: MW-5A Date Collected: 11/09/21 09:35 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		2.5	1.8	mg/L			11/14/21 19:08	2.5
Fluoride	0.27		0.25	0.065	mg/L			11/14/21 19:08	2.5
Sulfate	1700		25	19	mg/L			11/14/21 19:26	25
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1.6		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:07	1
Calcium	370		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	3100		20	20	mg/L			11/11/21 17:13	1
Method: Field Sampling - F	ield Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA Job ID: 180-129771-1

Matrix: Water

Lab Sample ID: 180-129771-6

Client Sample ID: MW-6 Date Collected: 11/09/21 10:20 Date Received: 11/10/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			2.5	1.8	mg/L			11/14/21 19:45	2.5
Fluoride	0.25		0.25	0.065	mg/L			11/14/21 19:45	2.5
Sulfate	1400		25	19	mg/L			11/14/21 20:04	25
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.38		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:10	1
Calcium	260		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:10	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1800		10	10	mg/L			11/11/21 17:13	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.09				SU			11/09/21 11:20	

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA

Job ID: 180-129771-1

Lab Sample ID: 180-129771-7

Client Sample ID: MW-6A Date Collected: 11/09/21 11:10 Dat

Date Collected: 11/09/21 11:1 Date Received: 11/10/21 10:0	-							Matrix	Water
Method: EPA 9056A - Anion	-	atography							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22		1.0	0.71	mg/L			11/14/21 20:22	1
Fluoride	0.38		0.10	0.026	mg/L			11/14/21 20:22	1
Sulfate	780		10	7.6	mg/L			11/14/21 20:41	10
Method: EPA 6020A - Metals Analyte	· · ·	otal Recove Qualifier	rable RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.41		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:14	1
Calcium	190		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
									DIFAC

Method: Field Sampling - Field	Sampling									
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac	
рН	7.17				SU			11/09/21 12:10	1	
										-

Client: Midwest Environmental Consultants Project/Site: Asbury Pond - EPA Job ID: 180-129771-1

Matrix: Water

Lab Sample ID: 180-129771-8

Client Sample ID: MW-7 Date Collected: 11/09/21 11:50 Date Received: 11/10/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37		2.5	1.8	mg/L			11/14/21 21:00	2.5
Fluoride	0.14	J	0.25	0.065	mg/L			11/14/21 21:00	2.5
Sulfate	1700		25	19	mg/L			11/14/21 21:18	25
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.24		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:17	1
Calcium	470		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2800		20	20	mg/L			11/11/21 17:13	1
Method: Field Sampling - Fi	ield Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pН	6.42				SU			11/09/21 12:50	1

9

Job ID: 180-129771-1

Client Sample ID: Duplicate Date Collected: 11/09/21 09:00 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-9

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.9		1.0	0.71	mg/L			11/14/21 22:14	1
Fluoride	0.37		0.10	0.026	mg/L			11/14/21 22:14	1
Sulfate	140		1.0	0.76	mg/L			11/14/21 22:14	1
Method: EPA 6020A - Metal	ls (ICP/MS) - Te	otal Recover	rable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.30		0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:21	1
Calcium	90		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	560		10	10	mg/L			11/11/21 17:13	1
- Method: Field Sampling - F	ield Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.23				SU			11/09/21 10:00	1

Job ID: 180-129771-1

Client Sample ID: Field Blank Date Collected: 11/09/21 09:15 Date Received: 11/10/21 10:00

Lab Sample ID: 180-129771-10

Matrix: Water

9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	72		1.0	0.71	mg/L			11/14/21 22:52	1
Fluoride	3.5		0.10	0.026	mg/L			11/14/21 22:52	1
Sulfate	ND		1.0	0.76	mg/L			11/14/21 22:52	1
_ Method: EPA 6020A - Meta	ls (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.057	J	0.080	0.039	mg/L		11/16/21 10:30	11/17/21 20:25	1
Calcium	5.2		0.50	0.13	mg/L		11/16/21 10:30	11/17/21 20:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	210		10	10	mg/L			11/11/21 17:13	1

Method: EPA 9056A - Anions, Ion Chromatography

Prep Type: Total/NA

Client Sample ID: MW-2

Client Sample ID: MW-2

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

5

Lab Sample ID: MB 180-378879/7 Analysis Batch: 378879

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.0	0.71	mg/L			11/14/21 14:25	1
Fluoride	ND		0.10	0.026	mg/L			11/14/21 14:25	1
Sulfate	ND		1.0	0.76	mg/L			11/14/21 14:25	1

Lab Sample ID: LCS 180-378879/6 Matrix: Water Analysis Batch: 378879

Matrix: Water

-	S	pike	LCS	LCS				%Rec.		
Analyte	Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride		50.0	48.5		mg/L		97	80 - 120	 	
Fluoride		2.50	2.46		mg/L		99	80 - 120		
Sulfate		50.0	48.7		mg/L		97	80 - 120		

Lab Sample ID: 180-129771-1 MS **Matrix: Water** Analysis Batch: 378879

	Sample S	Sample	Spike	MS	MS				%Rec.	
Analyte	Result C	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	100		125	230		mg/L		103	80 - 120	 -
Fluoride	0.37 J	J	6.25	6.93		mg/L		105	80 - 120	
Sulfate	44		125	175		mg/L		105	80 - 120	

Lab Sample ID: 180-129771-1 MSD **Matrix: Water**

Analysis Batch: 378879

Boron Calcium

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	100		125	230		mg/L		102	80 - 120	0	15
Fluoride	0.37	J	6.25	6.95		mg/L		105	80 - 120	0	15
Sulfate	44		125	173		mg/L		103	80 - 120	1	15

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-3789 Matrix: Water Analysis Batch: 379323	954/1-A MB	мв								ble ID: Method e: Total Recov Prep Batch:	verable
Analyte		Qualifier	R	L	MDL	Unit	D	P	repared	Analyzed	Dil Fac
Boron	ND		0.08	0 0	0.039	mg/L		11/1	16/21 10:30	11/17/21 18:58	1
Calcium	ND		0.5	0	0.13	mg/L		11/1	16/21 10:30	11/17/21 18:58	1
Lab Sample ID: LCS 180-378 Matrix: Water Analysis Batch: 379323	3954/2-A						Clier		-	Lab Control S e: Total Recov Prep Batch:	verable
Analyte			Spike Added	LCS Result			Unit	D	%Rec	%Rec. Limits	

			 	_				
 	 1.25	1.08	 mg/L	_	87	80 - 120	 	
	25.0	27.0	mg/L		108	80 - 120		

Job ID: 180-129771-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-378658/2 Matrix: Water Analysis Batch: 378658									CI	ient	Sam	ple ID: Method Prep Type: To		
	М	B MB												
Analyte	Resu	It Qualifier		RL	I	MDL	Unit		D	Prepa	red	Analyzed	Dil	Fac
Total Dissolved Solids	Ν	D		10		10	mg/L					11/11/21 17:13		1
Lab Sample ID: LCS 180-378658/1 Matrix: Water								Cli	ent Sa	ampl	e ID:	Lab Control S Prep Type: To		
Analysis Batch: 378658														
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	0) %R	lec	Limits		
Total Dissolved Solids			422		406			mg/L			96	80 - 120		
Lab Sample ID: 180-129771-1 DU											Cli	ent Sample ID:	: мv	N-2
Matrix: Water												Prep Type: To	otal/	NA
Analysis Batch: 378658														
-	ple Sa	ample			DU	DU							F	RPD
Analyte Re	sult Q	ualifier			Result	Qua	lifier	Unit	0	2		RPD) Li	.imit
Total Dissolved Solids	390				379			mg/L				2	<u> </u>	10

QC Association Summary

HPLC/IC

Analysis Batch: 378879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-129771-1	MW-2	Total/NA	Water	EPA 9056A	
180-129771-2	MW-3	Total/NA	Water	EPA 9056A	
180-129771-2	MW-3	Total/NA	Water	EPA 9056A	
180-129771-3	MW-4	Total/NA	Water	EPA 9056A	
180-129771-3	MW-4	Total/NA	Water	EPA 9056A	
180-129771-4	MW-5	Total/NA	Water	EPA 9056A	
180-129771-5	MW-5A	Total/NA	Water	EPA 9056A	
180-129771-5	MW-5A	Total/NA	Water	EPA 9056A	
180-129771-6	MW-6	Total/NA	Water	EPA 9056A	
180-129771-6	MW-6	Total/NA	Water	EPA 9056A	
180-129771-7	MW-6A	Total/NA	Water	EPA 9056A	
180-129771-7	MW-6A	Total/NA	Water	EPA 9056A	
180-129771-8	MW-7	Total/NA	Water	EPA 9056A	
180-129771-8	MW-7	Total/NA	Water	EPA 9056A	
180-129771-9	Duplicate	Total/NA	Water	EPA 9056A	
180-129771-10	Field Blank	Total/NA	Water	EPA 9056A	
MB 180-378879/7	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-378879/6	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-129771-1 MS	MW-2	Total/NA	Water	EPA 9056A	
180-129771-1 MSD	MW-2	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 378954

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-129771-1	MW-2	Total Recoverable	Water	3005A	
180-129771-2	MW-3	Total Recoverable	Water	3005A	
180-129771-3	MW-4	Total Recoverable	Water	3005A	
180-129771-4	MW-5	Total Recoverable	Water	3005A	
180-129771-5	MW-5A	Total Recoverable	Water	3005A	
180-129771-6	MW-6	Total Recoverable	Water	3005A	
180-129771-7	MW-6A	Total Recoverable	Water	3005A	
180-129771-8	MW-7	Total Recoverable	Water	3005A	
180-129771-9	Duplicate	Total Recoverable	Water	3005A	
180-129771-10	Field Blank	Total Recoverable	Water	3005A	
MB 180-378954/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-378954/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 379323

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-129771-1	MW-2	Total Recoverable	Water	EPA 6020A	378954
180-129771-2	MW-3	Total Recoverable	Water	EPA 6020A	378954
180-129771-3	MW-4	Total Recoverable	Water	EPA 6020A	378954
180-129771-4	MW-5	Total Recoverable	Water	EPA 6020A	378954
180-129771-5	MW-5A	Total Recoverable	Water	EPA 6020A	378954
180-129771-6	MW-6	Total Recoverable	Water	EPA 6020A	378954
180-129771-7	MW-6A	Total Recoverable	Water	EPA 6020A	378954
180-129771-8	MW-7	Total Recoverable	Water	EPA 6020A	378954
180-129771-9	Duplicate	Total Recoverable	Water	EPA 6020A	378954
180-129771-10	Field Blank	Total Recoverable	Water	EPA 6020A	378954
MB 180-378954/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	378954

Eurofins TestAmerica, Pittsburgh

QC Association Summary

11 12

Metals (Continued)

Analysis Batch: 379323 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 180-378954/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	378954

General Chemistry

Analysis Batch: 378658

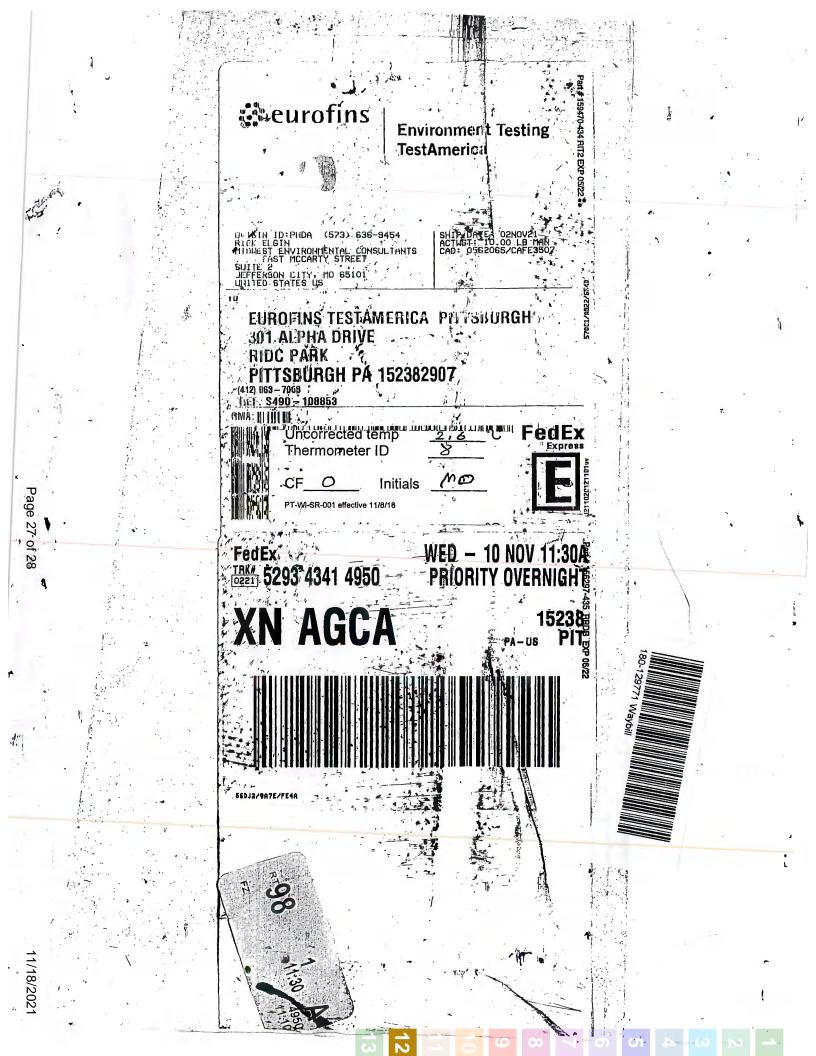
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-129771-1	MW-2	Total/NA	Water	SM 2540C	
180-129771-2	MW-3	Total/NA	Water	SM 2540C	
180-129771-3	MW-4	Total/NA	Water	SM 2540C	
180-129771-4	MW-5	Total/NA	Water	SM 2540C	
180-129771-5	MW-5A	Total/NA	Water	SM 2540C	
180-129771-6	MW-6	Total/NA	Water	SM 2540C	
180-129771-7	MW-6A	Total/NA	Water	SM 2540C	
180-129771-8	MW-7	Total/NA	Water	SM 2540C	
180-129771-9	Duplicate	Total/NA	Water	SM 2540C	
180-129771-10	Field Blank	Total/NA	Water	SM 2540C	
MB 180-378658/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-378658/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-129771-1 DU	MW-2	Total/NA	Water	SM 2540C	

Field Service / Mobile Lab

Analysis Batch: 378618

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-129771-1	MW-2	Total/NA	Water	Field Sampling	
180-129771-2	MW-3	Total/NA	Water	Field Sampling	
180-129771-3	MW-4	Total/NA	Water	Field Sampling	
180-129771-4	MW-5	Total/NA	Water	Field Sampling	
180-129771-5	MW-5A	Total/NA	Water	Field Sampling	
180-129771-6	MW-6	Total/NA	Water	Field Sampling	
180-129771-7	MW-6A	Total/NA	Water	Field Sampling	
180-129771-8	MW-7	Total/NA	Water	Field Sampling	
180-129771-9	Duplicate	Total/NA	Water	Field Sampling	

Eurofins TestAmerica, Pittsburgh


Chain of Custody Record

												THE LEADER I	ENVIRONMENTAL TESTIN
Client Information	Sampler: K	CKE	LGIN 6-945	Lab P	M: ner, Ca	athy				Carrier Tracking	No(s):	COC No: 490-52767-15	5725 1
Client Contact:	Phone: 97	3-63	6-949	E-Mai	il:	-						Page:	
Mr. Rick Elgin Company:	1 2 6	5-07	010	cath	y.gartn	er@te	stame	ricainc.co	m			Page 1 of 1 Job #:	
Midwest Environmental Consultants								Ana	lysis Re	quested	1	300 #.	
Address: 2009 East McCarty Street Suite 2	Due Date Reques	sted:	10km									Preservation (Codes: M - Hexane
City: Jefferson City	TAT Requested (days):		1	- /							B - NaOH	N - None AsNaO2
State. Zp: MO, 65101	-												a2O4S a2SO3
hone:	PO #:				1	Sulfate					. Dineiti		a2S2O3 2SO4
573-636-9454(Tel)	Purchase Orde	er not require	d		ÔN -	Sul	Solids	_					SP Dodecahydrate cetone
elgin@mecpc.com	WO #.					ide,	I Sol			180-129771	Chain of Cu		CAA
oject Name: sbury Pond - EPA	Project #: 49010011				Sample (Yes or ISD (Yes TNO)	Chloride, Fluoride,	Dissolved			100-123771		usiouy	h 4-5 Jher (specify)
te:	49010011 SSOW#:				Pla (Ye;	e, F	viose					Other:	
		_			San San	orid	I Dis					0	
Sample Identification	Sample Date	Sample Time	Type ((C=comp, or G=grab) BT=T		Field Filtered Pendorm/MB/I		2540C - Total I 6020A - Calcii	•				Total Number	Instructions/Note:
		\succ	Preservation	Code:	XX	N	NC					X	
1W-2	- 8 -2	1 3:10	GG	eul		K	XX					Field pH:	.45
IW-3	91	12:55	1	1		1	11					Field pH:	6.02
W-4	8	3:45				/						Field pH:	6.72
W-5	9	8:40										Field pH:	7.23
W-5A	9	9:35			Π		TI	1				Field pH:	6.84
IW-6	9	10:20						-				Field pH:	7.09
W-6A	9	11:10										Field pH:	7.17
IW-7	9	11:50					\square					Field pH:	6.42
uplicate (CMU-5)	9	9:00										Field pH:	7.23
ield Blank	9 V	9:15	VQ	1		V	VV					Field pH:	-
ossible Hazard Identification					Sa	mple	Dispos	sal (A fe	e may de	ssessed if sa	mples are re	tained longer than	n 1 month)
	son B Unkr		Radiological					o Client	P.	Disposal By Lal	,	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial Ir	nstruct	ions/QC I	Requireme	nts: 6020A/601	10C - Sb,As,I	Ba,Be,B,Cd,Ca,Cr,O	Co,Pb.,Mo, Li
mpty Kit Relinquished by:		Date:		- 77	Time:					Method of S	Shipment:		
elinquished by:	Date/Time:	21 4	00	<i>¥6(</i>	1	Receiv	ved by:	tol	R		Date/Time:	9-21 4:00	Company .
elinquished by	Date/Time:	~ (·		pany	_	Receiv	ved by:	1 N	Sen	2	Date/Time:	-11-21	Company
elinquished by:	Date/Time:		Com	pany	-	Receiv	ved by:	<i>pv</i>	-		Date/Time:	10:02	Company
Custody Seals Intact: Custody Seal No.:	<u> </u>					Cooler	Tempe	rature(s) °C	and Other R	emarks:	_	10.00	<u> </u>
Δ Yes Δ No			Pac	10-26 c	of 28			., -		- S		and the second s	11/18/2

to,

<mark>12</mark> 13

TestAmerica

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

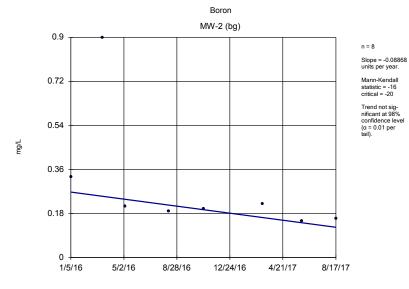
Login Number: 129771 List Number: 1 Creator: Watson, Debbie

Question	Answer	Comment
	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
ere are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time (excluding tests with immediate Ts)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
opropriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested IS/MSDs	True	
containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
<i>I</i> ultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

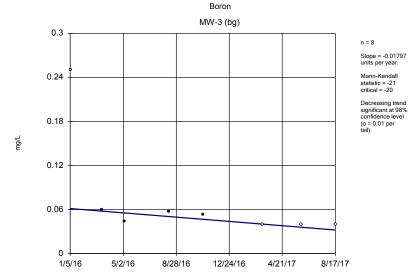
Job Number: 180-129771-1

List Source: Eurofins TestAmerica, Pittsburgh

APPENDIX 5

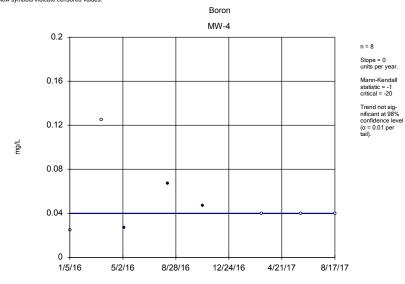

Statistical Analysis

Sanitas[™] Output – Background


Trending Analysis

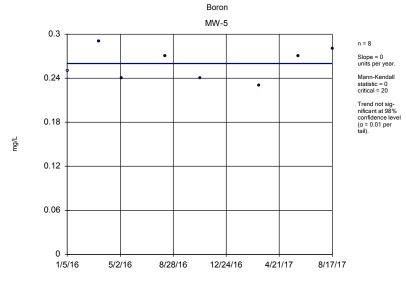
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

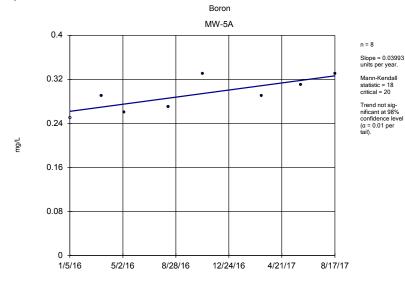

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

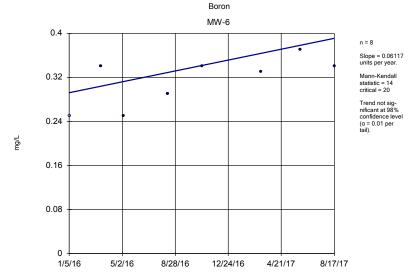
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas¹¹⁴ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

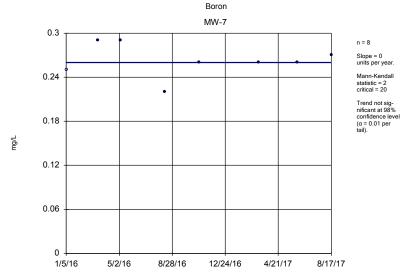
Sanitas¹⁰ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

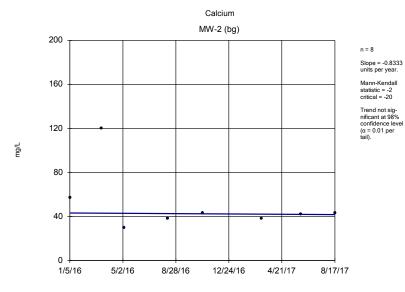
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

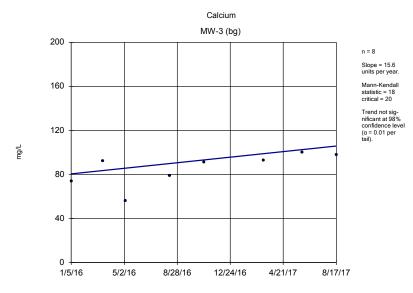
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

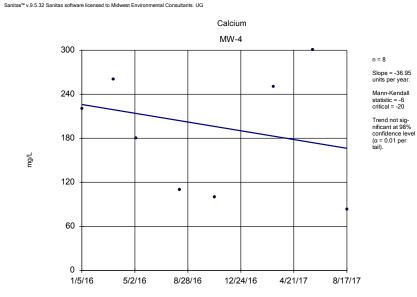
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

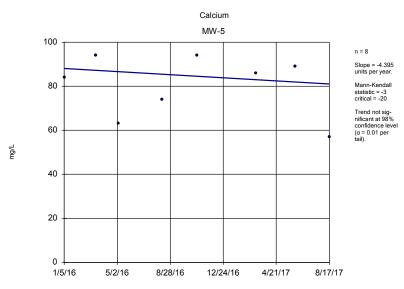


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

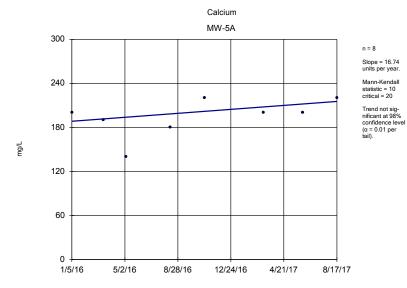
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

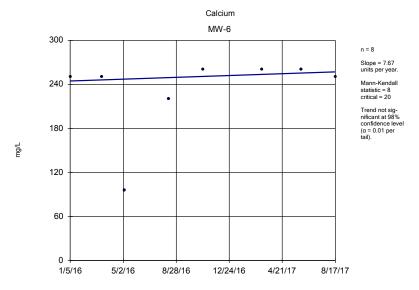
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

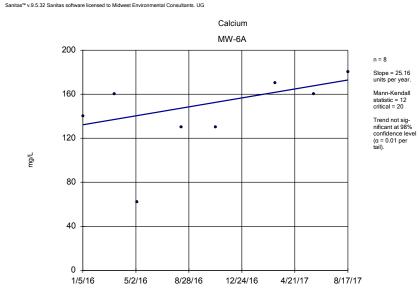

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

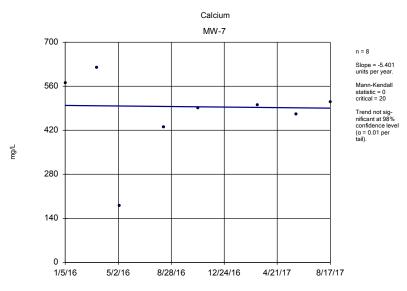


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

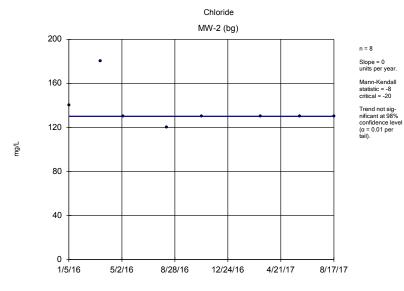


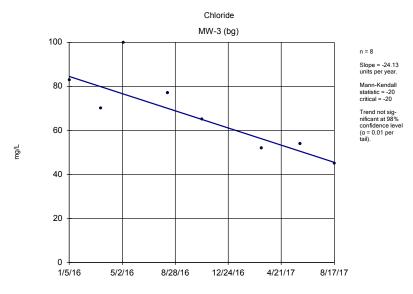
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

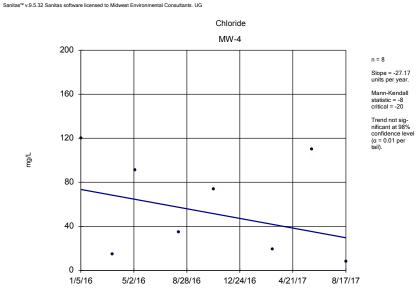
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

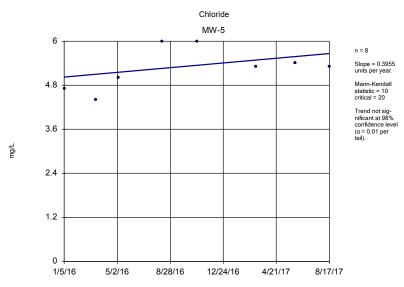

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

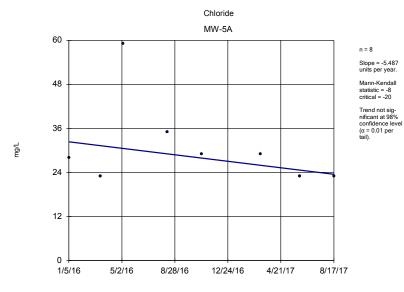

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

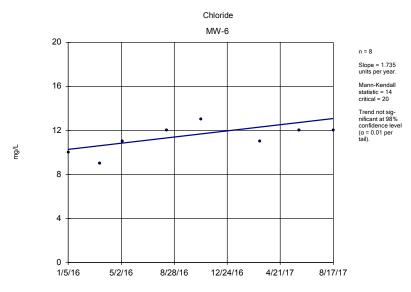
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

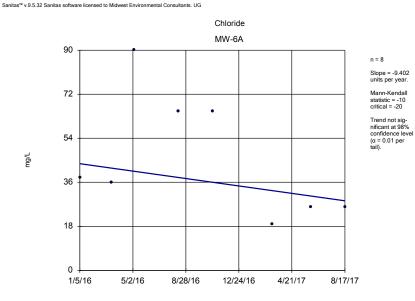
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

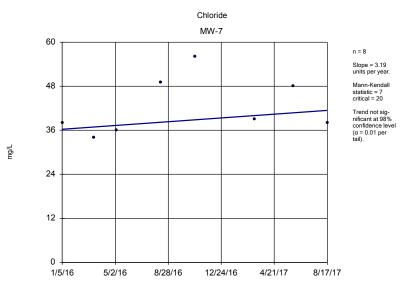


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

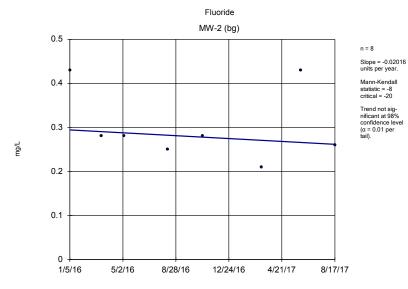
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

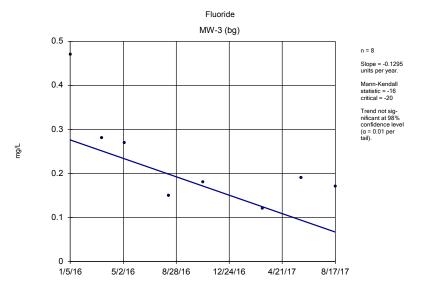

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

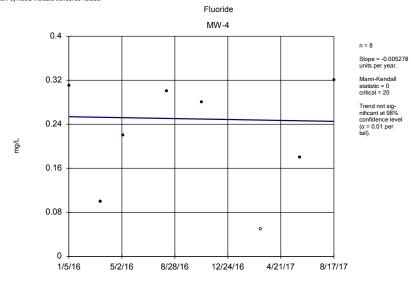
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

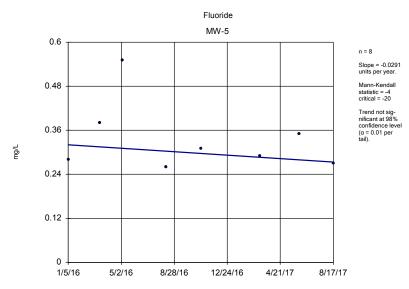
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

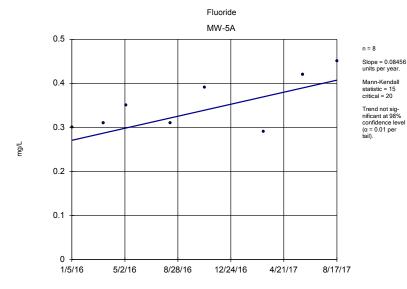

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

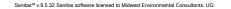
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

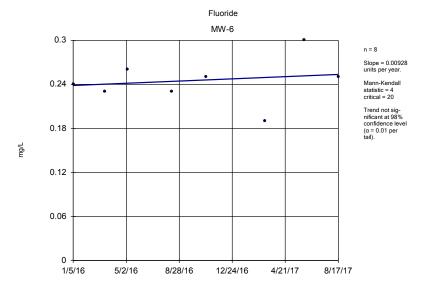
 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

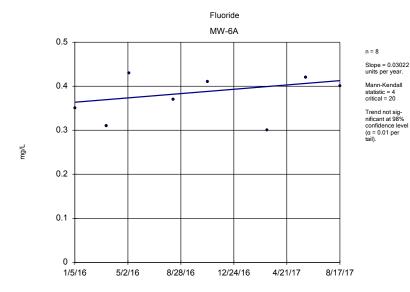

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

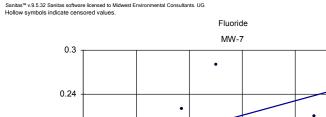

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



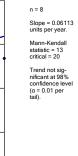

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

0.18

0.12


0.06

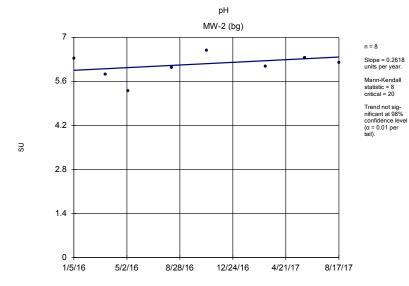
0

1/5/16

5/2/16

ng/L

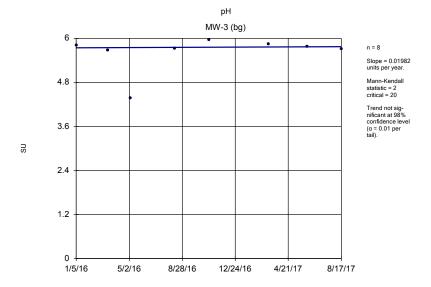
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


12/24/16

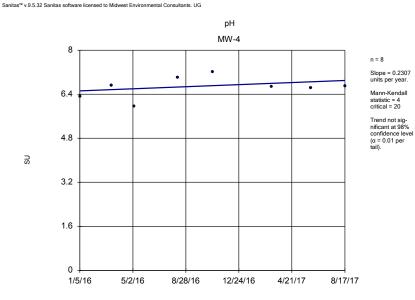
4/21/17

8/17/17

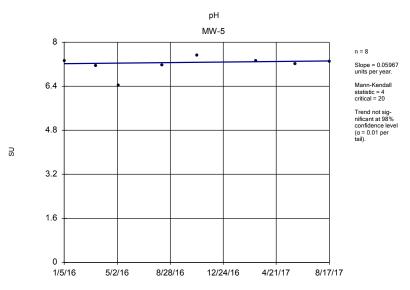
8/28/16


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

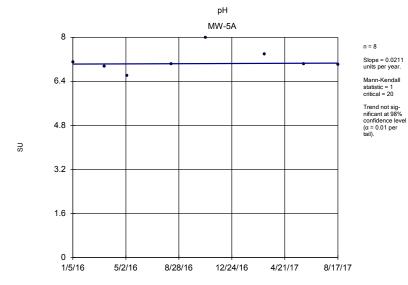
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

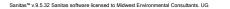

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

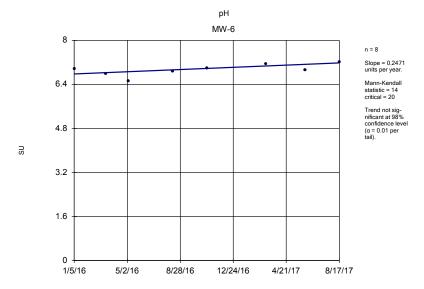
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

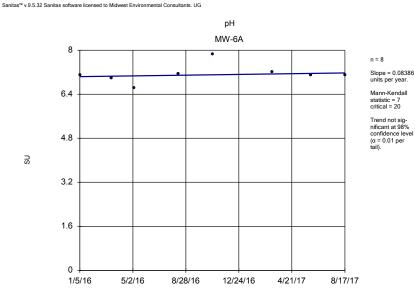

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

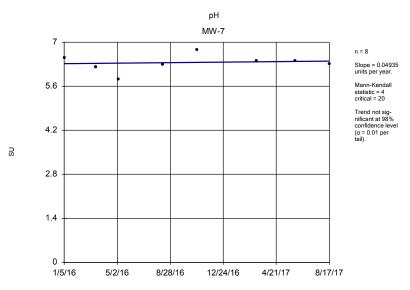


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

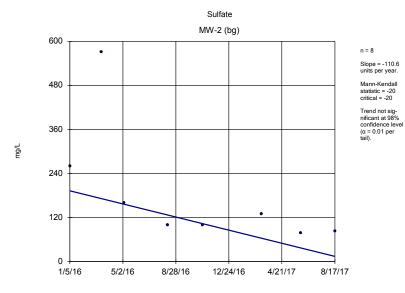


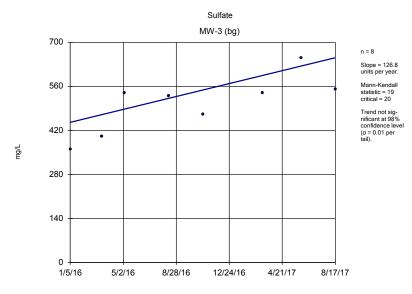
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

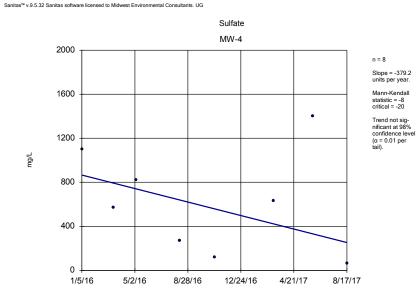
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

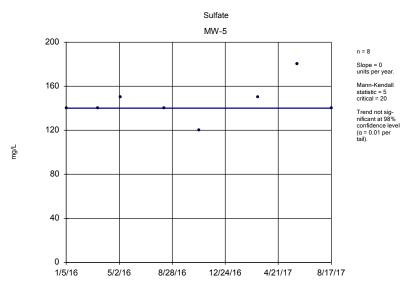

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



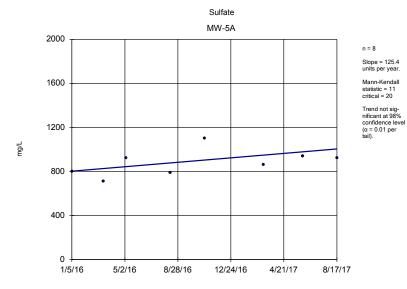
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

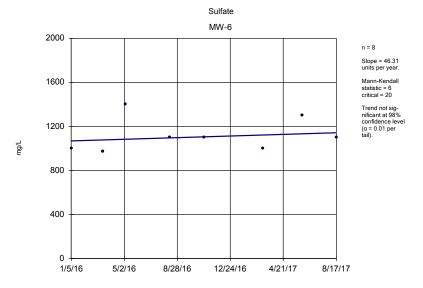
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

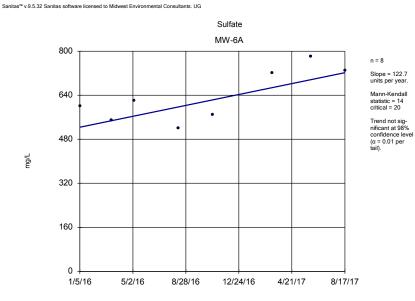

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

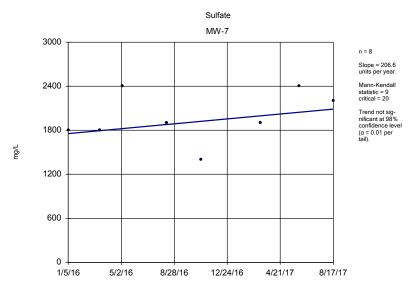


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

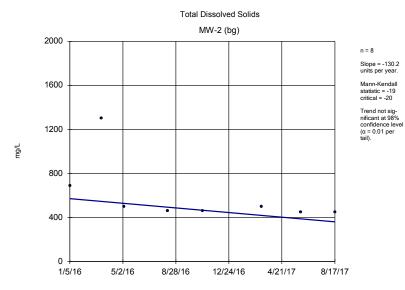
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



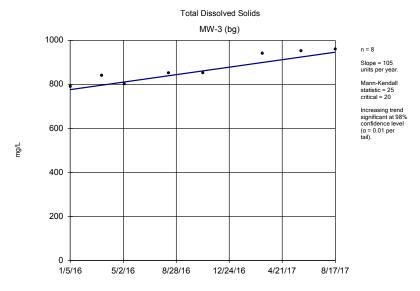
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

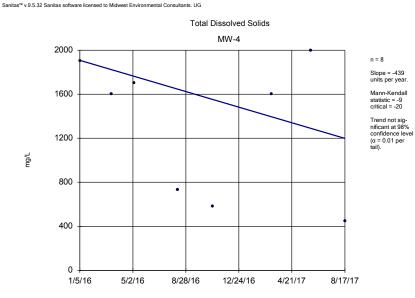
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

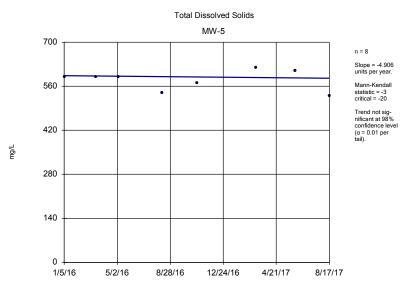

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

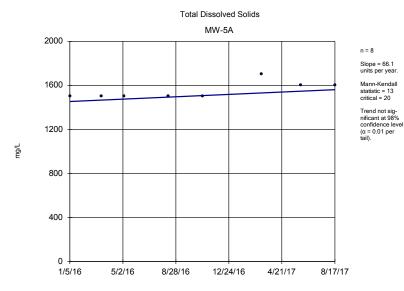


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

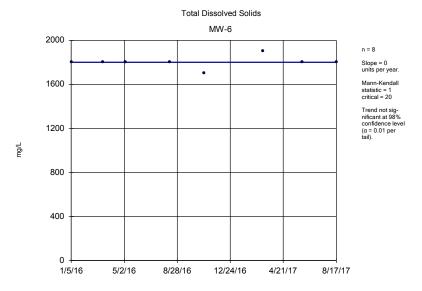

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:08 PM

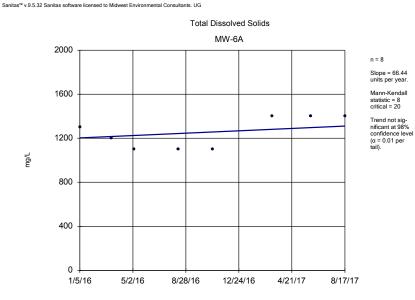

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



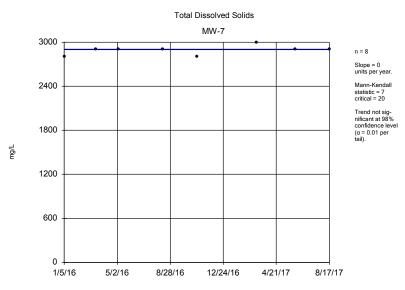
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

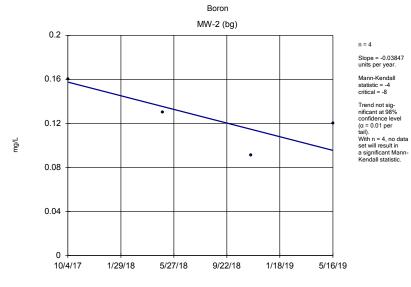
 Sen's Slope Estimator
 Analysis Run 1/23/2018 3:09 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas[™] v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

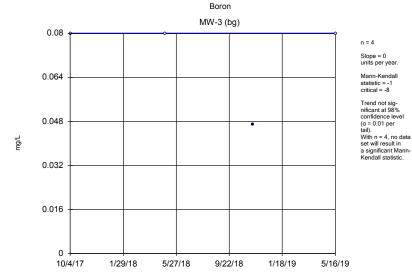
Trend Test


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3 only Printed 1/23/2018, 3:10 PM

	The Empire District	Client: Midwest Env	Ironmental Const	litants L	Jata: Asbury CCR In	npounamer	IS GW B	aseline Datat	base - App 3 on	ly Printed 1	(23/2018, 3:10 P	M
<u>Constituent</u>		Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP

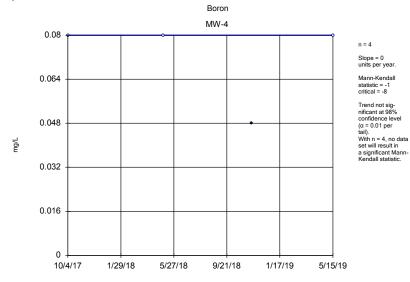
Trend Test

	The Empire District	Client: Midwest Er	vironmental Cons	ultants I	Data: Asbury CCR Im	npoundmer	nts GW B	aseline Datab	ase - App 3 only	Printed 1	/23/2018, 3:10 PM	l
<u>Constituent</u>		Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

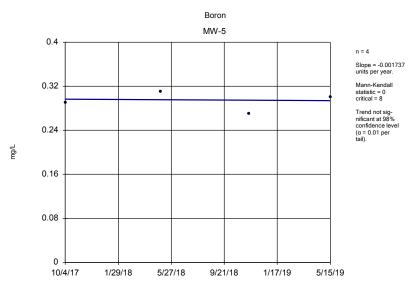
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

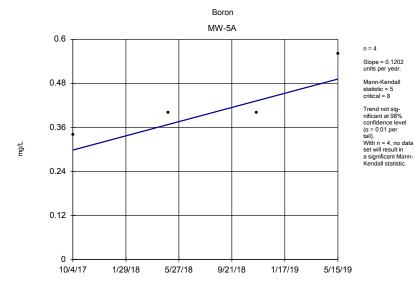
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

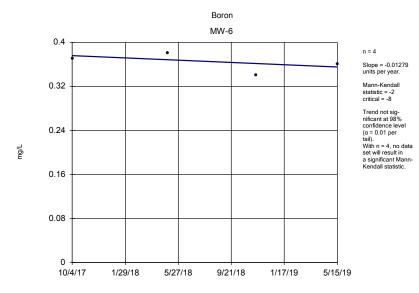
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

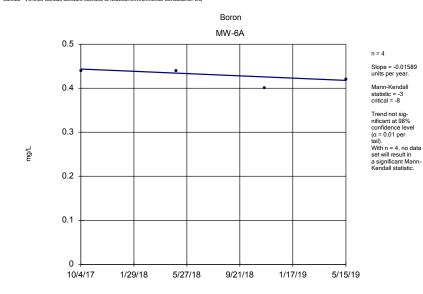

Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

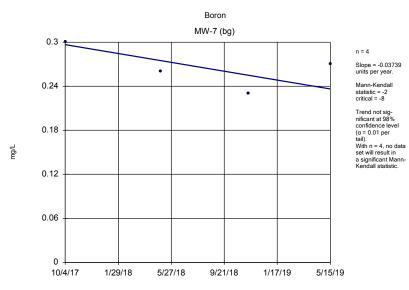

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

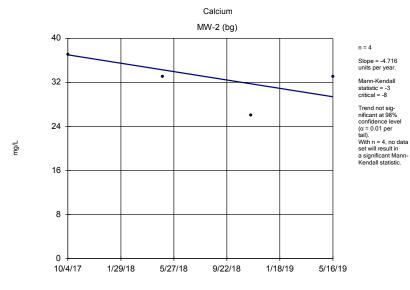

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

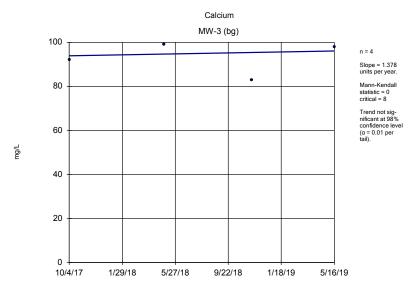
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

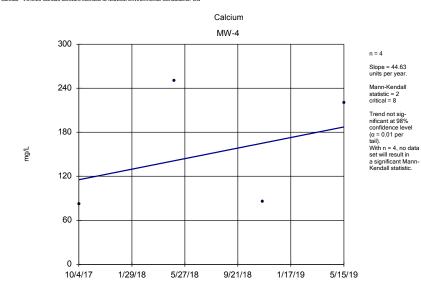
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

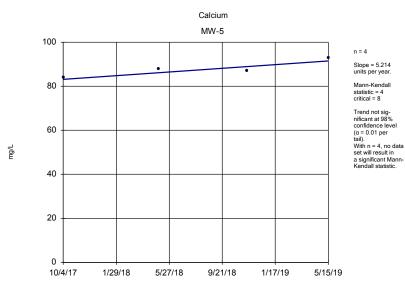
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

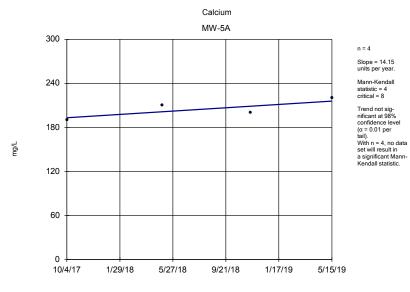


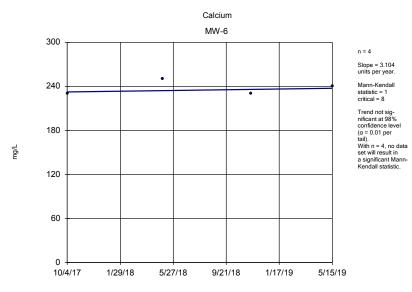
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

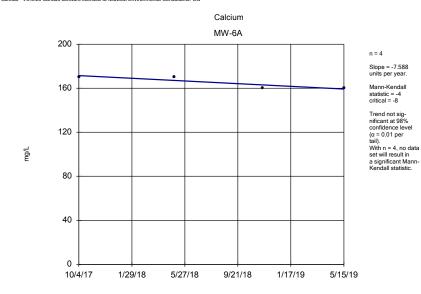
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

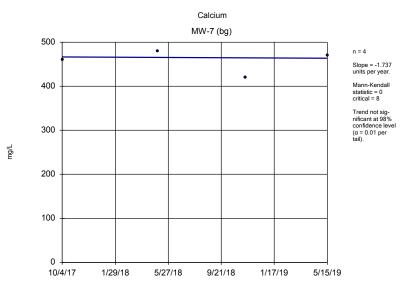
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

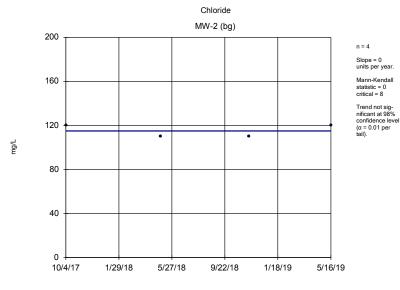


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

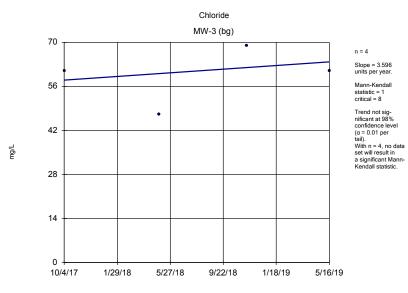
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

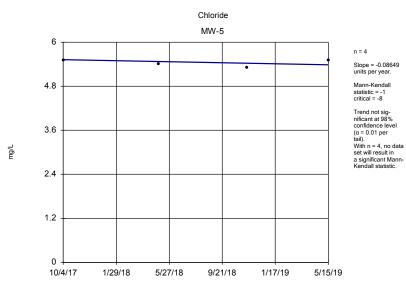

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

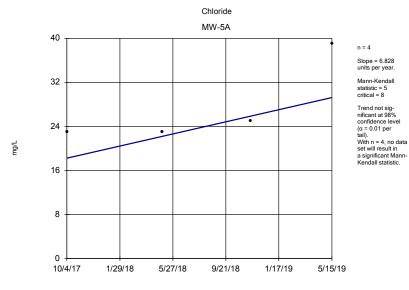


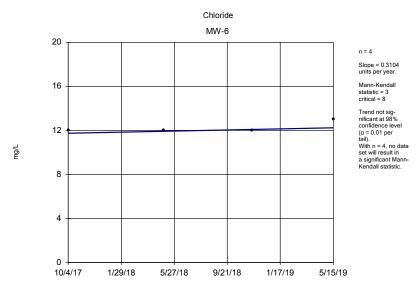
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

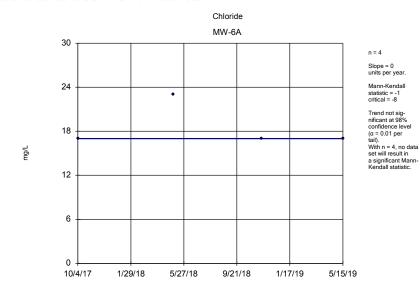

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

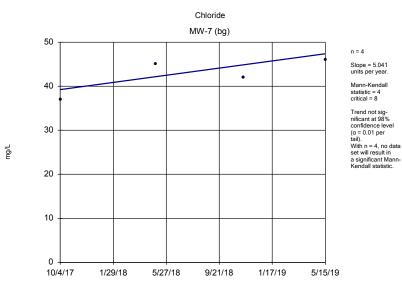
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

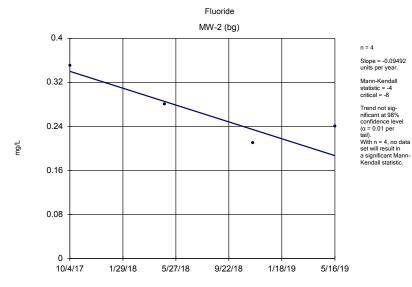
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

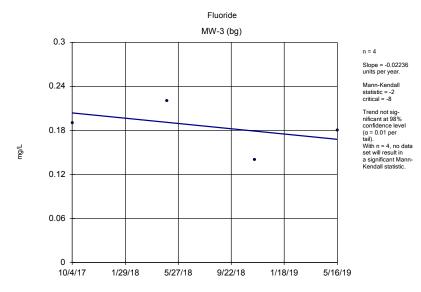
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

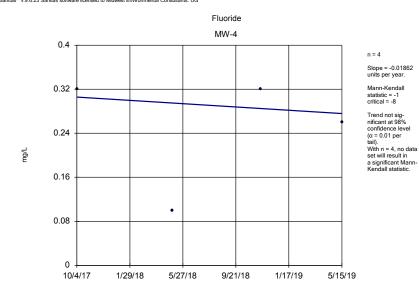
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

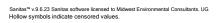

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

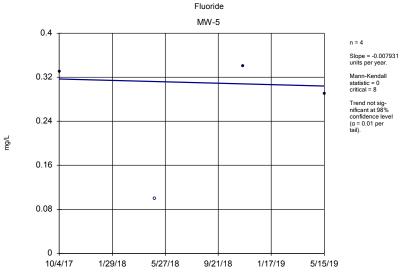
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

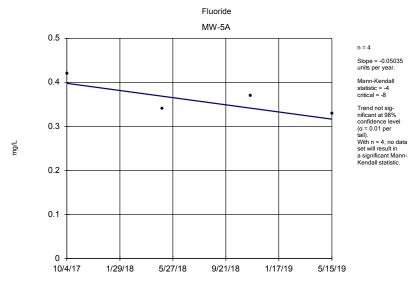

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

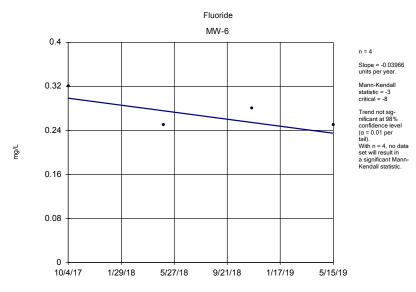
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

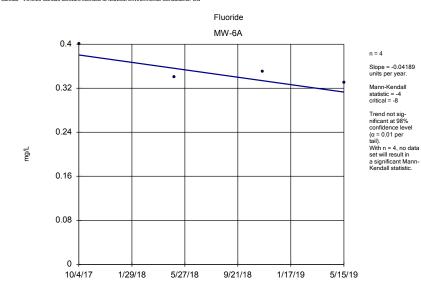
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:11 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background



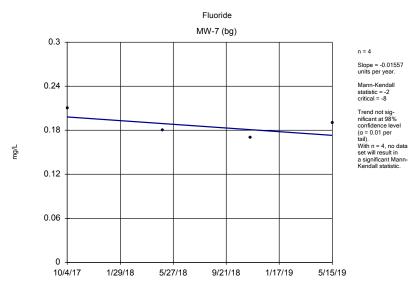
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

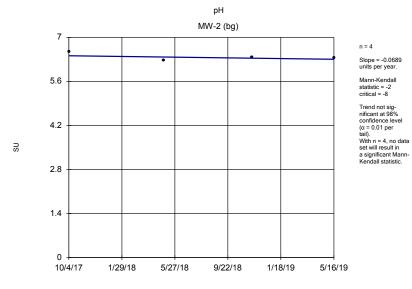
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

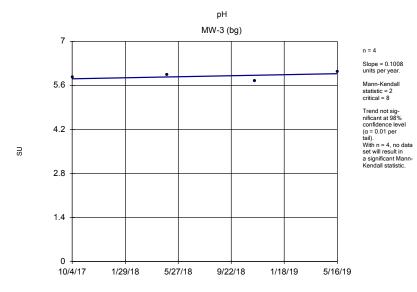


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

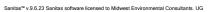
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

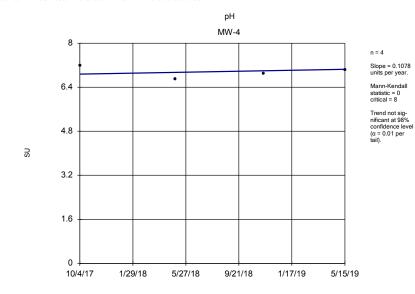

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

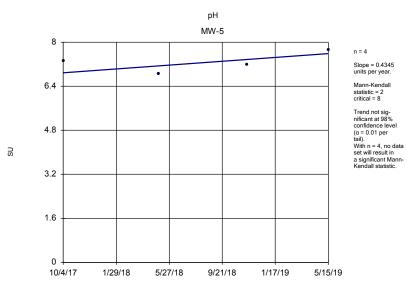
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

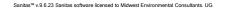


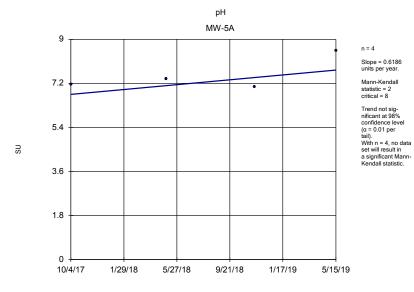


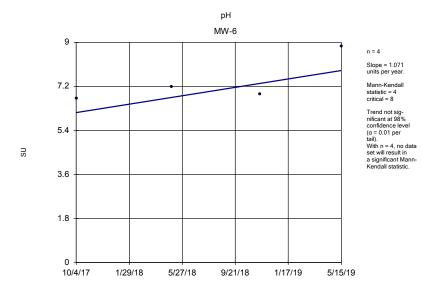
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

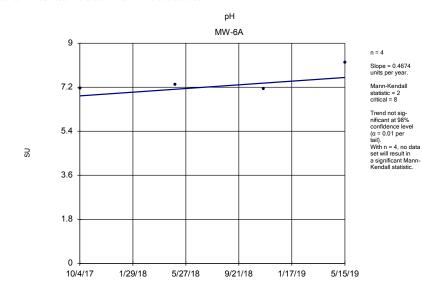





 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

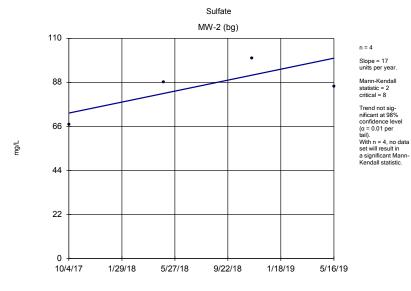


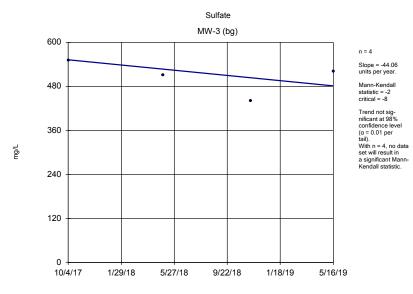
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

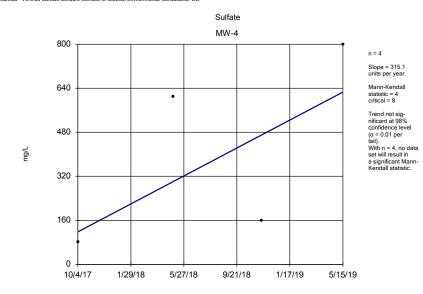
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

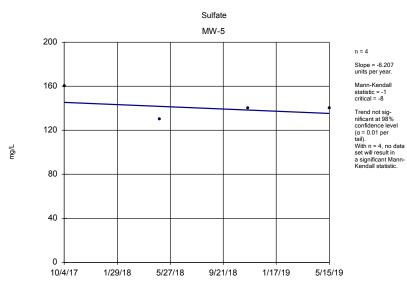
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

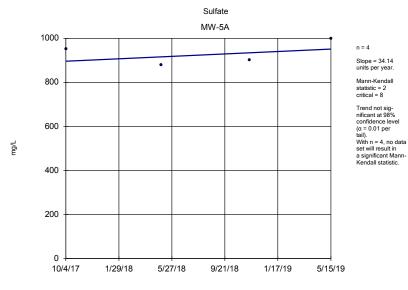


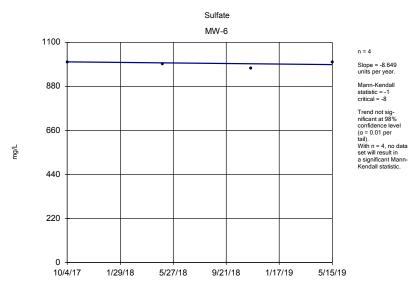
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas¹¹⁴ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

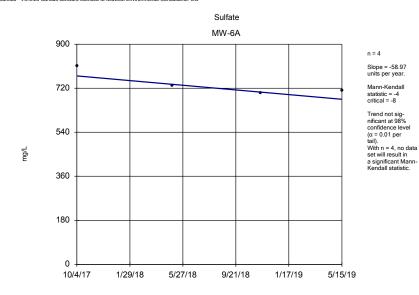
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background


Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

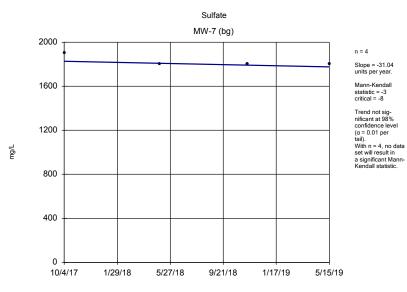
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

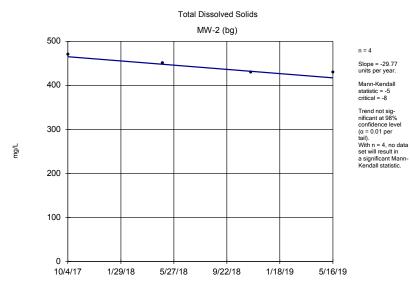
Sanitas[™] v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



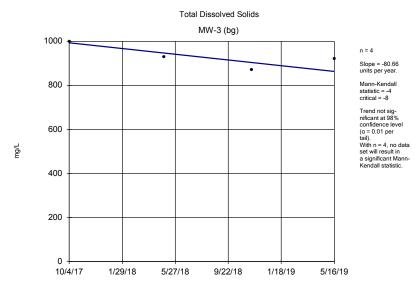
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

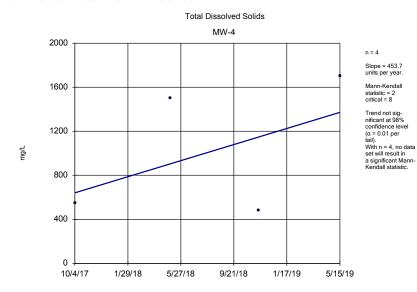

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

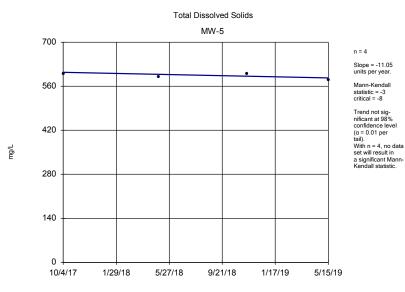

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

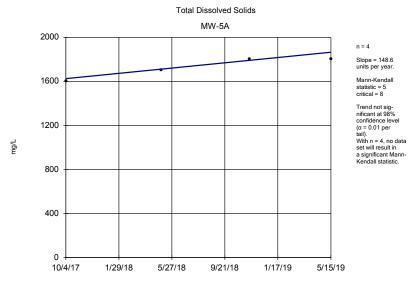

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

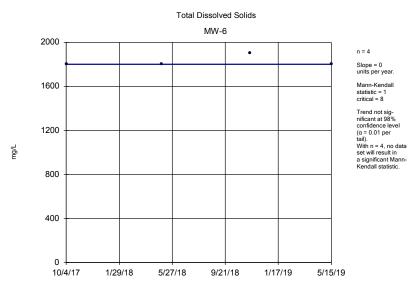
 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

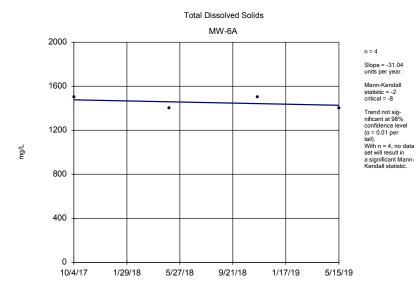

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

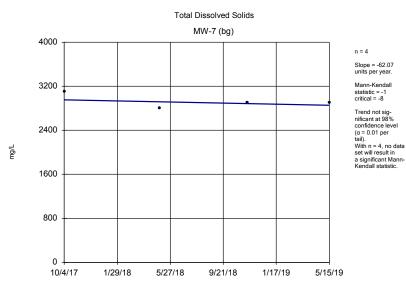

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG



 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

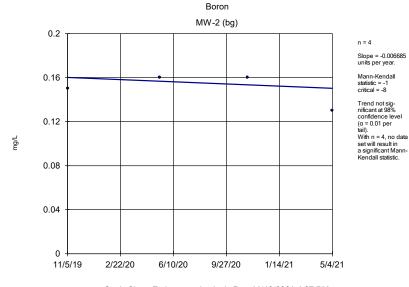

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 12/4/2019 2:12 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

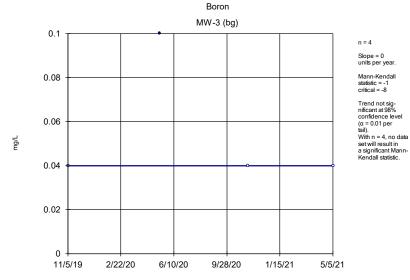
Trend Test


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM

	The Empire District Client. Mi			nis Dala. 11-	19 App 3 A	soury por	us with backy		u 12/4/2019, 2	. 13 F W	
<u>Constituent</u>	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	-1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	315.1	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	-6.207	-1 2	-8	No	4	0	n/a	n/a n/a	0.02	NP
Sulfate (mg/L)	MW-5A	34.14	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	-8.649	-1	-8	No	4	0	n/a	n/a n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4 4	0	n/a	n/a n/a	0.02	NP
Sulfate (mg/L) Total Dissolved Solids (mg/L)	MW-7 (bg)	-31.04	-3 F	-8	No		0	n/a	n/a n/a	0.02	NP
Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L)	MW-2 (bg) MW-3 (bg)	-29.77 -80.66	-5 4	-8 -8	No	4 4	0 0	n/a n/a	n/a n/a	0.02 0.02	NP NP
Total Dissolved Solids (Hig/L)	www-s (by)	-00.00	-4	-0	No	4	U	n/a	n/a	0.02	INF"

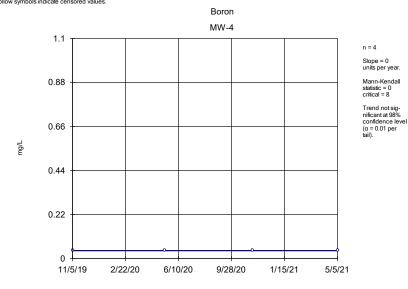
Trend Test

	The Empire District Client: Mi	Client: Midwest Environmental Consultants			Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM						
<u>Constituent</u>	Well	<u>Slope</u>	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

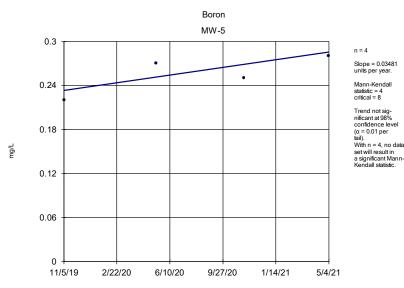
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:27 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

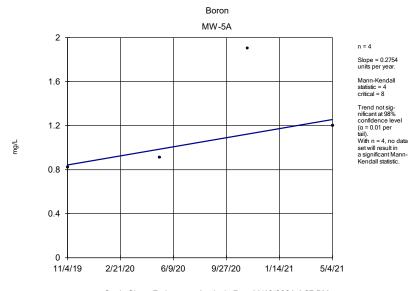

Sanitas^{tw} v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

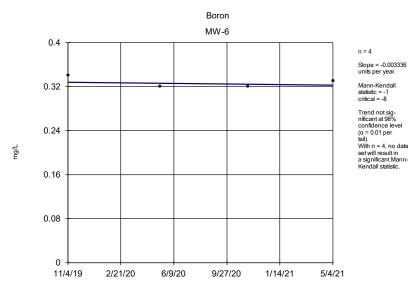
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

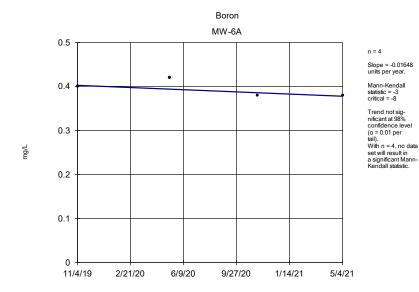
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:27 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

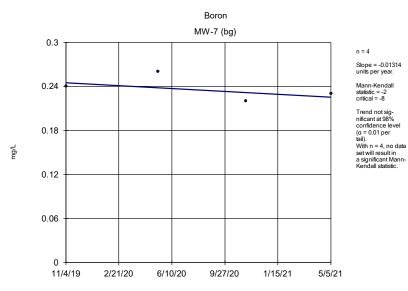
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

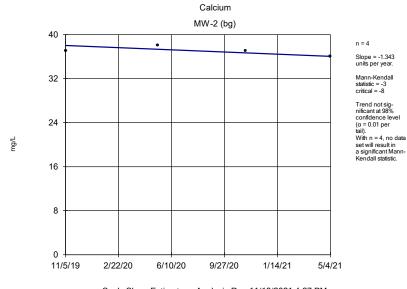


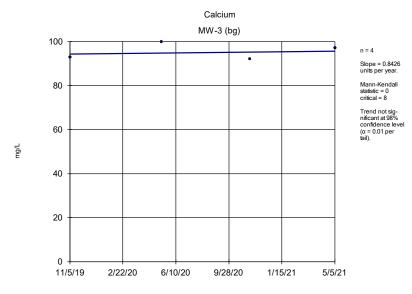
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

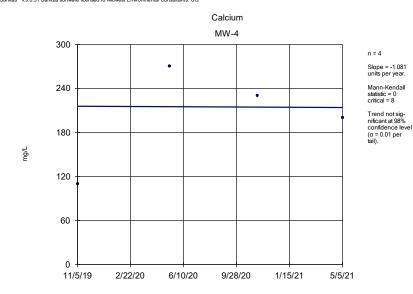
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:27 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

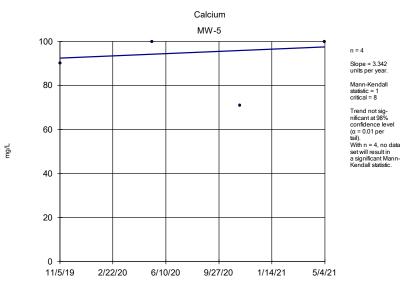
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

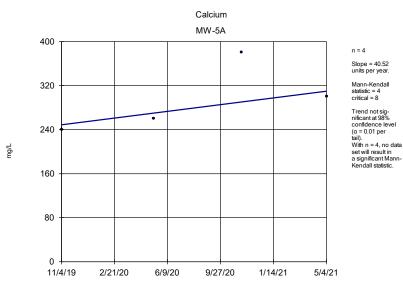
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG



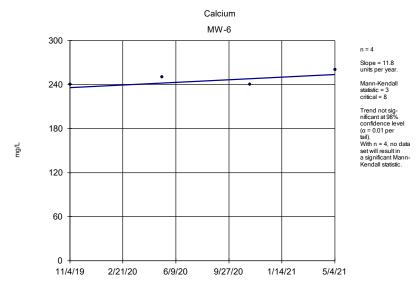
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

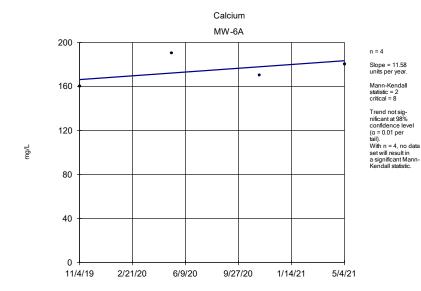

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:27 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

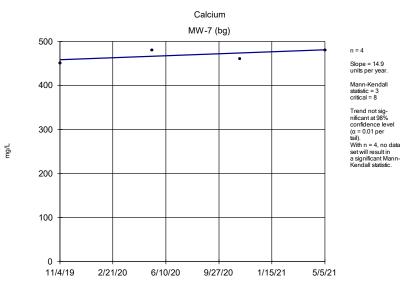

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

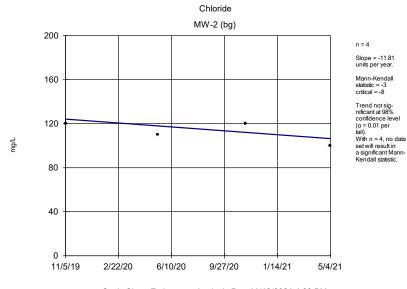
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

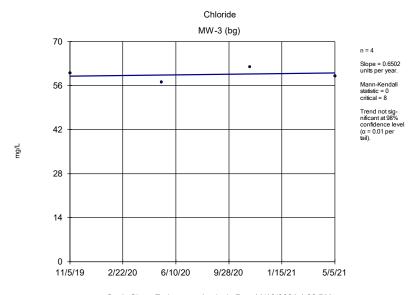


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

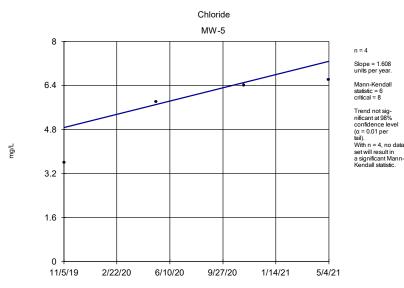

 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:27 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

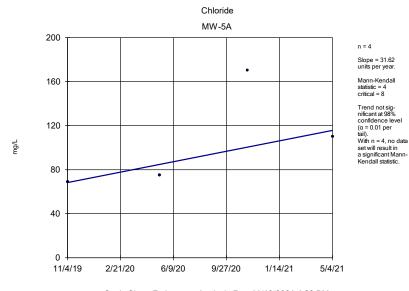
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

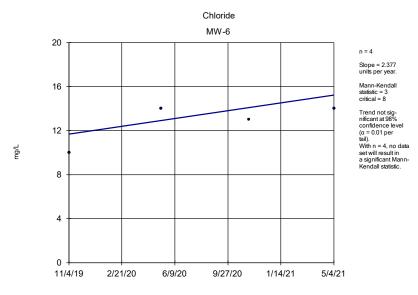
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

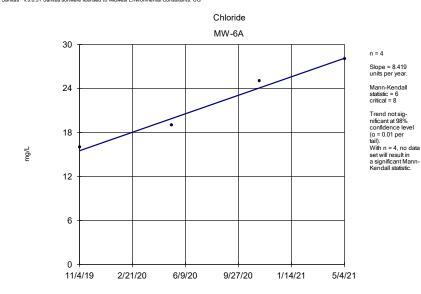
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

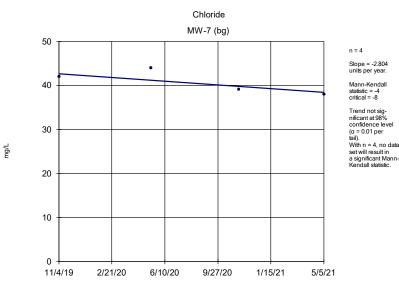
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

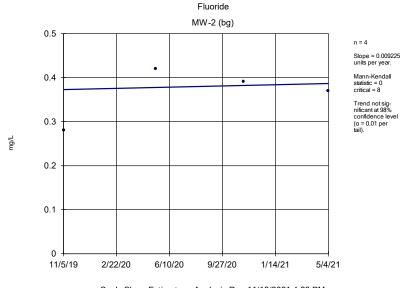


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

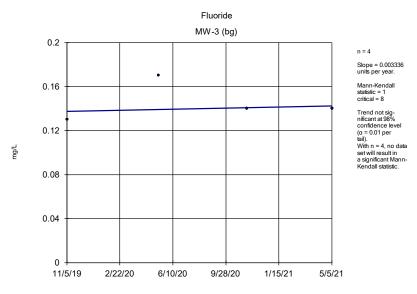
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

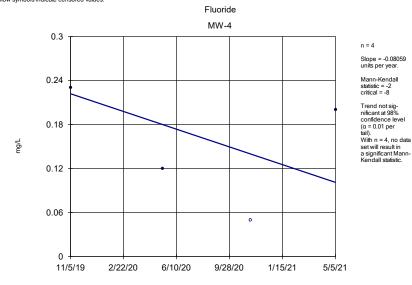

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG



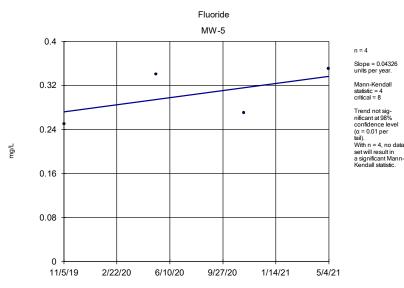
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

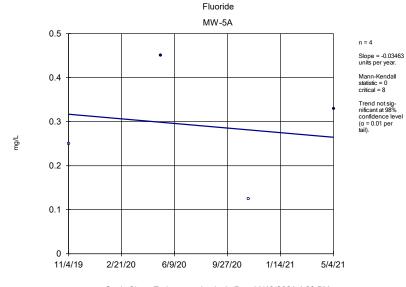
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

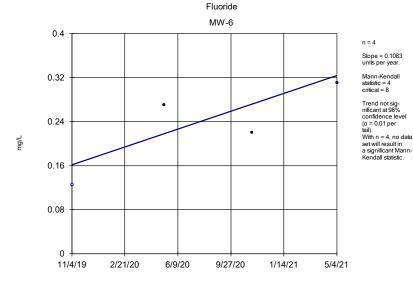
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

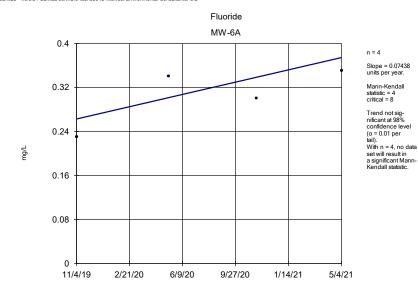
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG


Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

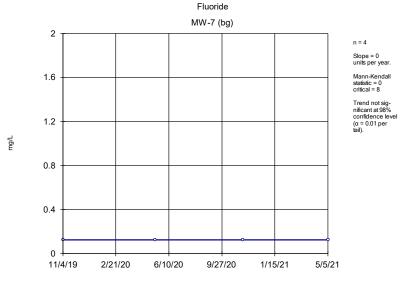
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

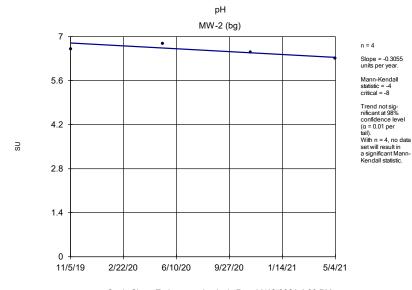

Sanitas^{tw} v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

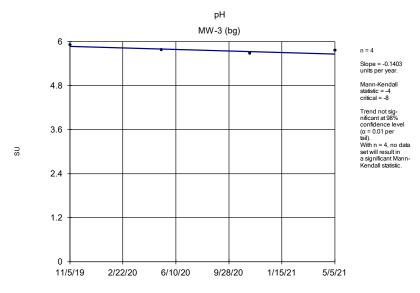
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

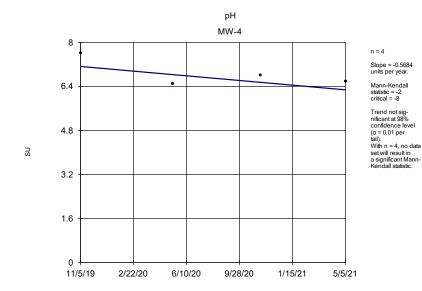

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

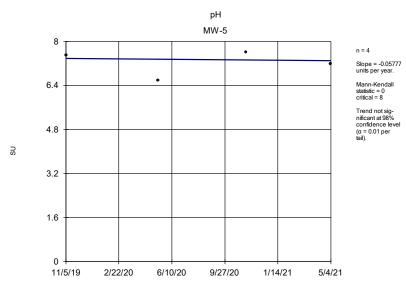

Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

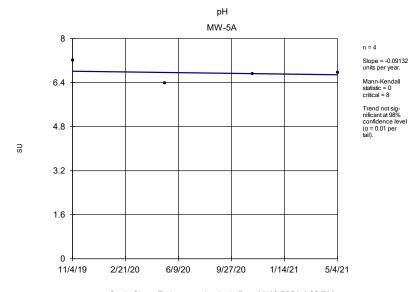
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

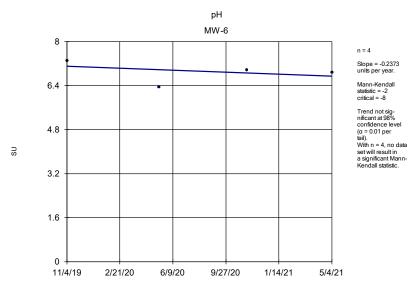


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

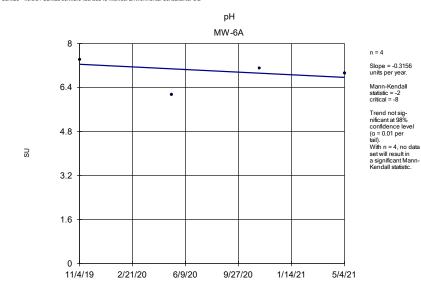
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG


 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

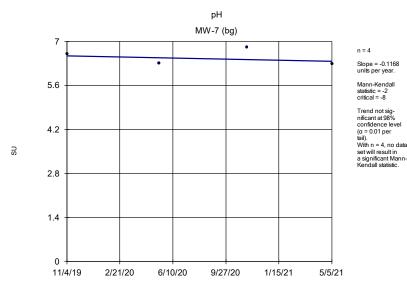

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

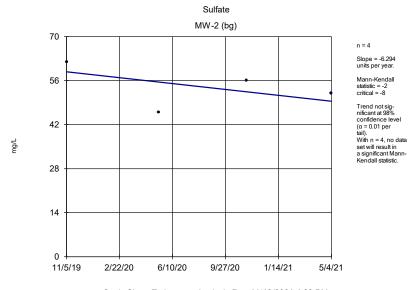


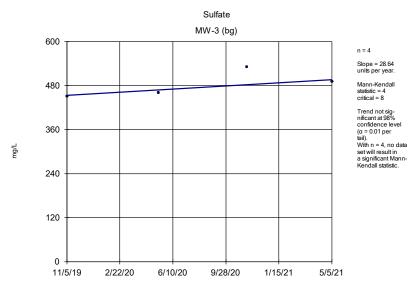
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



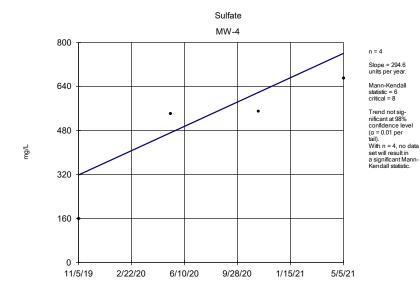
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

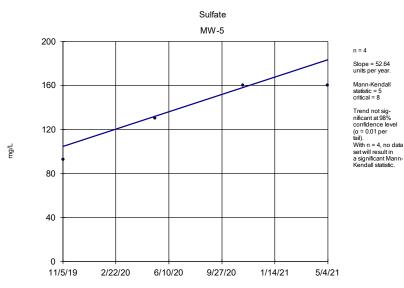
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

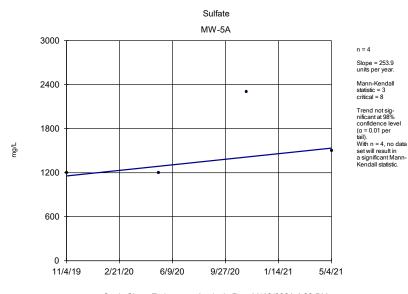


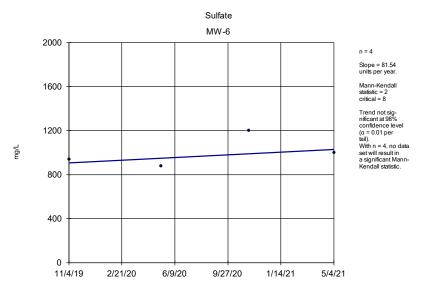
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

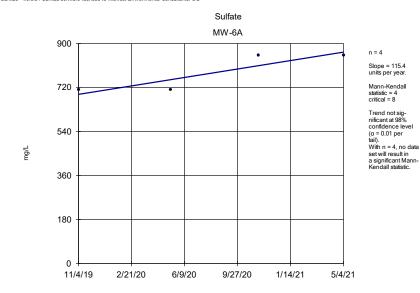
 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM


 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

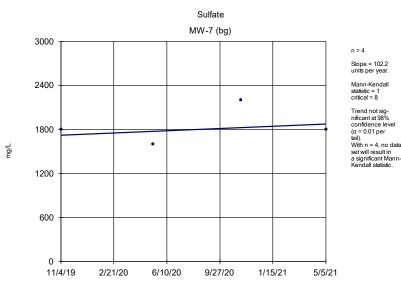
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

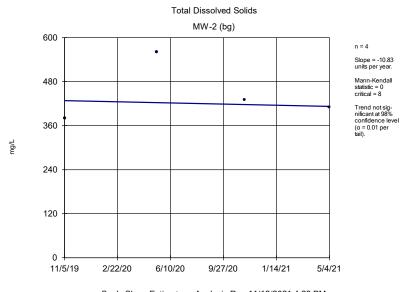


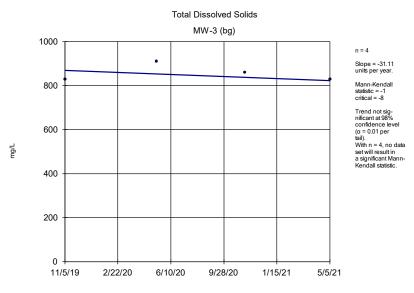
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

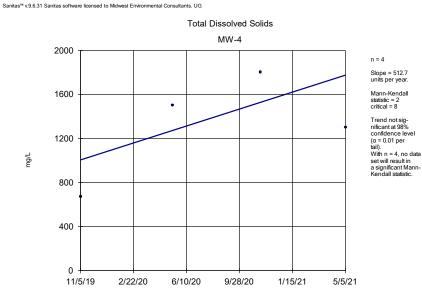

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

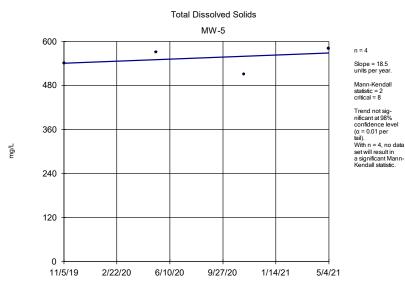

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

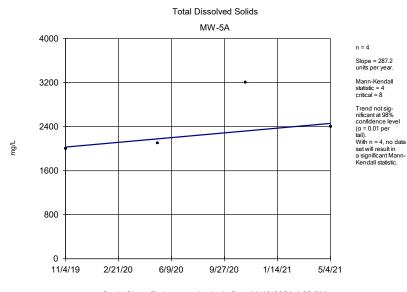
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

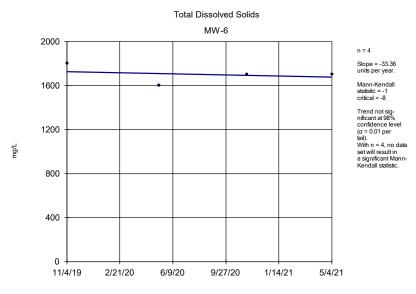


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

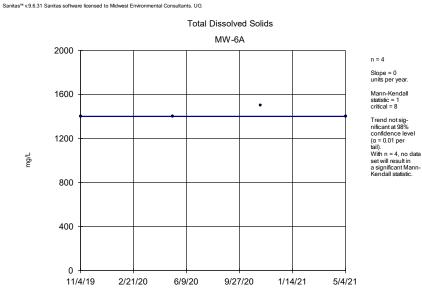

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

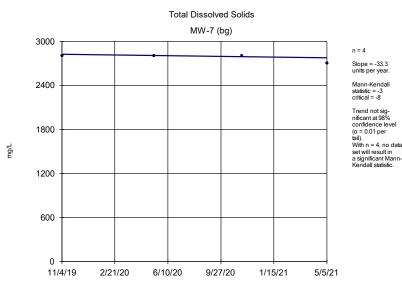

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background


Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

 Sen's Slope Estimator
 Analysis Run 11/18/2021 4:28 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

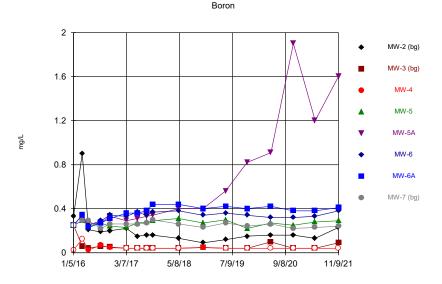
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Trend Test

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background Printed 11/18/2021, 4:28 PM

				5 Data. 11-21	App 3 As	buly pollus	with backy		11/10/2021, 4.20		
Constituent	Well	Slope	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	0	8	No	4	100	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	0.03481	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.2754	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01648	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.01314	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-1.343	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	0.8426	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-1.081	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	3.342	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	40.52	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	11.8	3	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	11.58	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	14.9	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	-11.81	-3	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	0.6502	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	8.002	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	1.608	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	31.62	4	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	2.377	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	8.419	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	-2.804	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	0.009225	0	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	0.003336	1	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.08059	-2	-8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	0.04326	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.03463	0	8	No	4	50	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	0.1083	4	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	0.07438	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	0	0	8	No	4	100	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.3055	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	-0.1403	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	-0.5684	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	-0.05777	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	-0.09132	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	-0.2373	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	-0.3156	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	-0.1168	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	-6.294	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	28.64	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	294.6	6	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	52.64	5	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	253.9	3	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	81.54	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	115.4	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	102.2	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-10.83	0	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-31.11	-1	-8	No	4	0	n/a	n/a	0.02	NP
,	,										

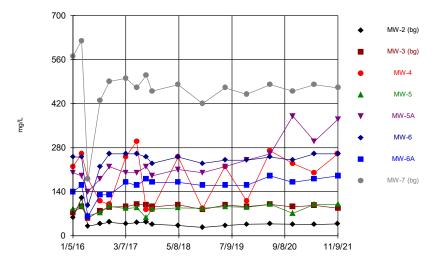
Trend Test


	The Empire District Client: Midwest Environmental Consultants			Data: 11-21 App 3 Asbury ponds with background Printed 11/18/2021, 4:28 PM							
<u>Constituent</u>	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	512.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	18.5	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	287.2	4	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	-33.36	-1	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-33.3	-3	-8	No	4	0	n/a	n/a	0.02	NP

Sanitas[™] Output – Sampling Event

Time Series Analysis

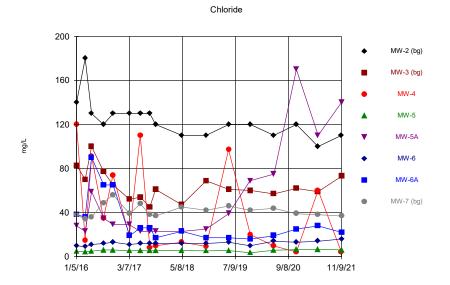
Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.



 Time Series
 Analysis Run 11/18/2021 4:30 PM

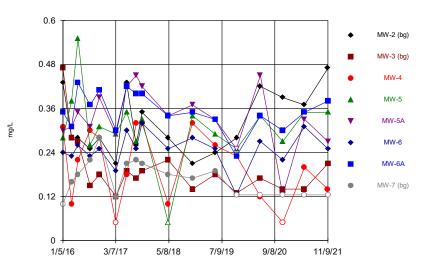
 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

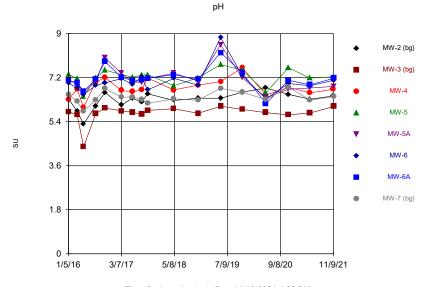
Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG


Calcium

 Time Series
 Analysis Run 11/18/2021 4:30 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

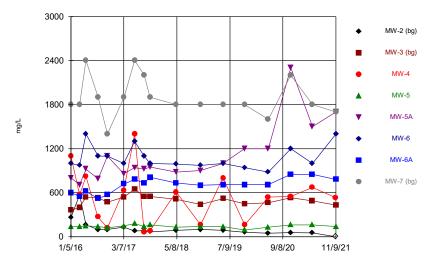



 Time Series
 Analysis Run 11/18/2021 4:30 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

Sanitas^{te} v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Fluoride



Total Dissolved Solids

Sanitas¹⁴ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

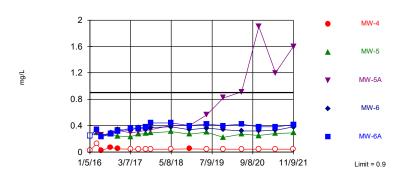
 Time Series
 Analysis Run 11/18/2021 4:30 PM

 The Empire District
 Client: Midwest Environmental Consultants
 Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

4000 MW-2 (bg) ٠ MW-3 (bg) 3200 MW-4 0-0 MW-5 2400 MW-5A V mg/L MW-6 1600 MW-6A ۲ MW-7 (bg) 800 0 1/5/16 3/7/17 5/8/18 7/9/19 9/8/20 11/9/21

Time Series Analysis Run 11/18/2021 4:30 PM
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



Sanitas[™] Output – Sampling Event

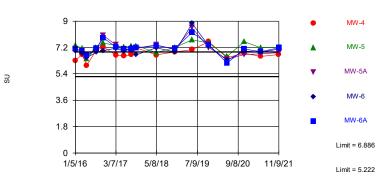
Prediction Limits

Sanitas^w v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values. Exceeds Limit: MW-5A

Boron Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. 21.57% NDs. Annual perconstituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 11/18/2021 4:33 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Exceeds Limits: MW-5, MW-6, MW-6A

pН

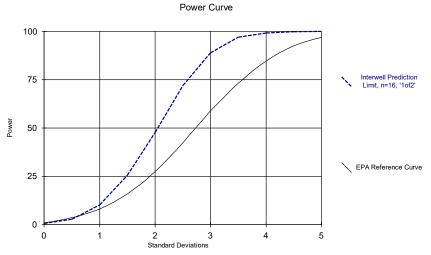
Interwell Parametric

Background Data Summary (based on cube transformation): Mean=234.5, Std. Dev.=45.03, n=51. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9477, critical = 0.935. Kappa = 2.044 (c=23, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002288. Individual comparison alpha = 0.0003816. Comparing 5 points to limit.

Prediction Limit Analysis Run 11/18/2021 4:33 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Prediction Limit


	The Empire District	Client: Midwe	st Environmental (Consultants	Data: 11-21 Ap	op 3 Asbu	iry pond	s with bacl	ground Printed	11/18/2021, 4:3	34 PM
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.9	n/a	11/8/2021	0.04ND	No	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-5	0.9	n/a	11/9/2021	0.29	No	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-5A	0.9	n/a	11/9/2021	1.6	Yes	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-6	0.9	n/a	11/9/2021	0.38	No	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-6A	0.9	n/a	11/9/2021	0.41	No	51	21.57	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-4	620	n/a	11/8/2021	260	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	11/9/2021	100	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	11/9/2021	370	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	11/9/2021	260	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	11/9/2021	190	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	11/8/2021	3.9	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	11/9/2021	6.1	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	11/9/2021	140	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	11/9/2021	16	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	11/9/2021	22	No	51	0	n/a	0.000725	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.4456	n/a	11/8/2021	0.14	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.4456	n/a	11/9/2021	0.35	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.4456	n/a	11/9/2021	0.27	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.4456	n/a	11/9/2021	0.25	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.4456	n/a	11/9/2021	0.38	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
pH (SU)	MW-4	6.886	5.222	11/8/2021	6.72	No	51	0	x^3	0.000	Param Inter 1 of 2
pH (SU)	MW-5	6.886	5.222	11/9/2021	7.23	Yes	51	0	x^3	0.000	Param Inter 1 of 2
pH (SU)	MW-5A	6.886	5.222	11/9/2021	6.84	No	51	0	x^3	0.000	Param Inter 1 of 2
pH (SU)	MW-6	6.886	5.222	11/9/2021	7.09	Yes	51	0	x^3	0.000	Param Inter 1 of 2
pH (SU)	MW-6A	6.886	5.222	11/9/2021	7.17	Yes	51	0	x^3	0.000	Param Inter 1 of 2
Sulfate (mg/L)	MW-4	2400	n/a	11/8/2021	530	No	51	1.961	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	11/9/2021	140	No	51	1.961	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	11/9/2021	1700	No	51	1.961	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	11/9/2021	1400	No	51	1.961	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	11/9/2021	780	No	51	1.961	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	11/8/2021	1400	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	11/9/2021	580	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	11/9/2021	3100	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	11/9/2021	1800	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	11/9/2021	1500	No	51	0	n/a	0.000725	NP Inter (normality)

Sanitas[™] Output – Sampling Event

Power Curve

Sanitas[™] v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Kappa = 1.96, based on 3 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 11/18/2021 4:43 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background